27,876 research outputs found

    The excitation of near-infrared H2 emission in NGC 253

    Full text link
    Because of its large angular size and proximity to the Milky Way, NGC 253, an archetypal starburst galaxy, provides an excellent laboratory to study the intricacies of this intense episode of star formation. We aim to characterize the excitation mechanisms driving the emission in NGC 253. Specifically we aim to distinguish between shock excitation and UV excitation as the dominant driving mechanism, using Br\gamma, H_2 and [FeII] as diagnostic emission line tracers. Using SINFONI observations, we create linemaps of Br\gamma, [FeII]_{1.64}, and all detected H_2 transitions. By using symmetry arguments of the gas and stellar gas velocity field, we find a kinematic center in agreement with previous determinations. The ratio of the 2-1 S(1) to 1-0 S(1) H_2 transitions can be used as a diagnostic to discriminate between shock and fluorescent excitation. Using the 1-0 S(1)/2-1 S(1) line ratio as well as several other H_2 line ratios and the morphological comparison between H_2 and Br\gamma and [FeII], we find that excitation from UV photons is the dominant excitation mechanisms throughout NGC 253. We employ a diagnostic energy level diagram to quantitatively differentiate between mechanisms. We compare the observed energy level diagrams to PDR and shock models and find that in most regions and over the galaxy as a whole, fluorescent excitation is the dominant mechanism exciting the H_2 gas. We also place an upper limit of the percentage of shock excited H_2 at 29%. We find that UV radiation is the dominant excitation mechanism for the H_2 emission. The H_2 emission does not correlate well with Br\gamma but closely traces the PAH emission, showing that not only is H_2 fluorescently excited, but it is predominately excited by slightly lower mass stars than O stars which excite Br\gamma, such as B stars

    Neural spike train synchronization indices: Definitions, interpretations, and applications

    Get PDF
    A comparison of previously defined spike train synchronization indices is undertaken within a stochastic point process framework. The second-order cumulant density (covariance density) is shown to be common to all the indices. Simulation studies were used to investigate the sampling variability of a single index based on the second-order cumulant. The simulations used a paired motoneurone model and a paired regular spiking cortical neurone model. The sampling variability of spike trains generated under identical conditions from the paired motoneurone model varied from 50% to 160% of the estimated value. On theoretical grounds, and on the basis of simulated data a rate dependence is present in all synchronization indices. The application of coherence and pooled coherence estimates to the issue of synchronization indices is considered. This alternative frequency domain approach allows an arbitrary number of spike train pairs to be evaluated for statistically significant differences, and combined into a single population measure. The pooled coherence framework allows pooled time domain measures to be derived, application of this to the simulated data is illustrated. Data from the cortical neurone model is generated over a wide range of firing rates (1-250 spikes/s). The pooled coherence framework correctly characterizes the sampling variability as not significant over this wide operating range. The broader applicability of this approach to multielectrode array data is briefly discussed

    Social and Economic Decline as Factors in Conflict in the Caucasus

    Get PDF
    We argue that the conflicts in the Caucasus are the result of the abrogation by the elite of the earlier, Soviet era, social contract. This process was accompanied by the collapse of the formal economy; evidenced by huge national income compression, falling public goods provision, and growing inequality and poverty. In the absence of state provision of basic amenities and governance, ordinary people are compelled to fall back on kinship ties. Declining standards of governance facilitate state-sponsored corruption and criminality in a setting where the shadow economic activity is increasingly important to individual survival strategies. Oil pipelines and the right to control the transit of goods both legal and illegal also underlie conflict in the region. Criminality has replaced ethnicity as the major motivation for conflict and conflict per se has become a lucrative source of income.Caucasus, conflict, natural resources

    Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers A method to determine molecular gas properties in luminous galaxies

    Get PDF
    We present fluxes in both neutral carbon [CI] lines at the centers of 76 galaxies with FIR luminosities between 10^{9} and 10^{12} L(o) obtained with Herschel-SPIRE and with ground-based facilities, along with the J=7-6, J=4-3, J=2-1 12CO and J=2-1 13CO line fluxes. We investigate whether these lines can be used to characterize the molecular ISM of the parent galaxies in simple ways and how the molecular gas properties define the model results. In most starburst galaxies, the [CI]/13CO flux ratio is much higher than in Galactic star-forming regions, and it is correlated to the total FIR luminosity. The [CI](1-0)/CO(4-3), the [CI](2-1) (2-1)/CO(7-6), and the [CI] (2-1)/(1-0) flux ratios are also correlated, and trace the excitation of the molecular gas. In the most luminous infrared galaxies (LIRGs), the ISM is fully dominated by dense and moderately warm gas clouds that appear to have low [C]/[CO] and [13CO]/[12CO] abundances. In less luminous galaxies, emission from gas clouds at lower densities becomes progressively more important, and a multiple-phase analysis is required to determine consistent physical characteristics. Neither the CO nor the [CI] velocity-integrated line fluxes are good predictors of H2 column densities in individual galaxies, and X(CI) conversion factors are not superior to X(CO) factors. The methods and diagnostic diagrams outlined in this paper also provide a new and relatively straightforward means of deriving the physical characteristics of molecular gas in high-redshift galaxies up to z=5, which are otherwise hard to determine

    Helicity dynamics in stratified turbulence in the absence of forcing

    Get PDF
    A numerical study of decaying stably-stratified flows is performed. Relatively high stratification and moderate Reynolds numbers are considered, and a particular emphasis is placed on the role of helicity (velocity-vorticity correlations). The problem is tackled by integrating the Boussinesq equations in a periodic cubical domain using different initial conditions: a non-helical Taylor-Green (TG) flow, a fully helical Beltrami (ABC) flow, and random flows with a tunable helicity. We show that for stratified ABC flows helicity undergoes a substantially slower decay than for unstratified ABC flows. This fact is likely associated to the combined effect of stratification and large scale coherent structures. Indeed, when the latter are missing, as in random flows, helicity is rapidly destroyed by the onset of gravitational waves. A type of large-scale dissipative "cyclostrophic" balance can be invoked to explain this behavior. When helicity survives in the system it strongly affects the temporal energy decay and the energy distribution among Fourier modes. We discover in fact that the decay rate of energy for stratified helical flows is much slower than for stratified non-helical flows and can be considered with a phenomenological model in a way similar to what is done for unstratified rotating flows. We also show that helicity, when strong, has a measurable effect on the Fourier spectra, in particular at scales larger than the buoyancy scale for which it displays a rather flat scaling associated with vertical shear

    Large-scale anisotropy in stably stratified rotating flows

    Get PDF
    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up to 102431024^3 grid points and Reynolds numbers of ≈1000\approx 1000. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with ∼k⊥−5/3\sim k_\perp^{-5/3}, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales

    Isotropisation at small scales of rotating helically-driven turbulence

    Full text link
    We present numerical evidence of how three-dimensionalization occurs at small scale in rotating turbulence with Beltrami (ABC) forcing, creating helical flow. The Zeman scale ℓΩ\ell_{\Omega} at which the inertial and eddy turn-over times are equal is more than one order of magnitude larger than the dissipation scale, with the relevant domains (large-scale inverse cascade of energy, dual regime in the direct cascade of energy EE and helicity HH, and dissipation) each moderately resolved. These results stem from the analysis of a large direct numerical simulation on a grid of 307233072^3 points, with Rossby and Reynolds numbers respectively equal to 0.07 and 2.7×1042.7\times 10^4. At scales smaller than the forcing, a helical wave-modulated inertial law for the energy and helicity spectra is followed beyond ℓΩ\ell_{\Omega} by Kolmogorov spectra for EE and HH. Looking at the two-dimensional slow manifold, we also show that the helicity spectrum breaks down at ℓΩ\ell_{\Omega}, a clear sign of recovery of three-dimensionality in the small scales.Comment: 13 pages, 6 figure
    • …
    corecore