5 research outputs found

    Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule

    Get PDF
    The thiazide-sensitive Na+–Cl− cotransporter (NCC) is important for renal electrolyte balance and its phosphorylation causes an increase in its transport activity and cellular localization. Here, we generated phospho-specific antibodies against two conserved N-terminal phosphorylation sites (Thr53, Thr58 and Thr53/Thr58) to assess the role of arginine vasopressin (AVP) in regulating NCC in rodent kidney in vivo. Immunohistochemistry showed distinct staining of phosphorylated NCC (pNCC) at the apical plasma membrane domain of distal convoluted tubule (DCT) cells. Unlike total NCC, pNCC was localized only to the apical plasma membrane as determined by immunogold electron microscopy. In AVP-deficient Brattleboro rats, acute deamino-Cys-1, d-Arg-8 vasopressin (dDAVP) exposure significantly increased pNCC abundance at the apical plasma membrane by about threefold, whereas total NCC and its cellular distribution were not affected. dDAVP significantly increased the abundance of phosphorylated STE20/SPS1-related proline–alanine-rich kinase and oxidative stress-response kinase (SPAK and OSR1), kinases implicated in NCC phosphorylation. Intracellular calcium levels in early and late DCTs were increased in response to 1min superfusion of dDAVP, confirming that these segments are AVP responsive. In rats fed a high-salt diet with angiotensin (ANG) type 1-receptor blockade, similar increases in pNCC and active SPAK and OSR1 were detected following chronic or acute dDAVP, thus indicating the effects of AVP are independent of ANGII. Our results show that AVP is a potent regulator of NCC activity

    CHIP regulates aquaporin-2 quality control and body water homeostasis

    Get PDF
    The importance of the kidney distal convoluted tubule (DCT) and cortical collecting duct (CCD) is highlighted by various water and electrolyte disorders that arise when the unique transport properties of these segments are disturbed. Despite this critical role, little is known about which proteins have a regulatory role in these cells and how these cells can be regulated by individual physiologic stimuli. By combining proteomics, bioinformatics, and cell biology approaches,we found that the E3 ubiquitin ligase CHIP is highly expressed throughout the collecting duct; is modulated in abundance by vasopressin; interacts with aquaporin-2 (AQP2), Hsp70, and Hsc70; and can directly ubiquitylate the water channel AQP2 in vitro. shRNA knockdown of CHIP in CCD cells increased AQP2 protein t 1/2 and reduced AQP2 ubiquitylation, resulting in greater levels of AQP2 andphosphorylatedAQP2.CHIP knockdown increased the plasma membrane abundance of AQP2 in these cells. Compared with wild-type controls, CHIP knockout mice or novel CRISPR/Cas9 mice without CHIPE3 ligase activity had greater AQP2 abundance and altered renal water handling, with decreased water intake and urine volume, alongside higher urine osmolality. We did not observe significant changes in other water- or sodium-transporting proteins in the gene-modified mice. In summary, these results suggest that CHIP regulates AQP2 and subsequently, renal water handling

    The E3 ubiquitin-protein ligase Nedd4-2 regulates the sodium chloride cotransporter NCC but is not required for a potassium-induced reduction of NCC expression

    No full text
    Na+ and K+ balance is influenced by the activity of the sodium chloride cotransporter NCC in the distal convoluted tubule. NCC activity and abundance are reduced by high extracellular K+. The E3 ubiquitin ligase neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) has been proposed as a modulator of NCC abundance. Here, we examined the functional role of Nedd4-2 on NCC regulation and whether Nedd4-2 is important for the effects of high extracellular K+ on NCC. Total and plasma membrane levels of ubiquitylated NCC were lower in NCC-expressing MDCKI cells after Nedd4-2 deletion. NCC and phosphorylated NCC (pT58-NCC) levels were higher after Nedd4-2 deletion, and NCC levels on the plasma membrane were elevated. No significant changes were seen after Nedd4-2 knockdown in the levels of SPAK and phosphorylated SPAK (pS373-SPAK), the major NCC regulatory kinase. Nedd4-2 deficiency had no effect on the internalization rate of NCC from the plasma membrane, but NCC protein half-life was increased. In ex vivo experiments with kidney tubule suspensions from Nedd4-2 knockout (KO) mice, high K+ reduced total and pT58-NCC regardless of genotype. We conclude that Nedd4-2 is involved in ubiquitylation of NCC and modulating its plasma membrane levels and degradation. However, Nedd4-2 does not appear to be important for K+ induced reductions in NCC abundance
    corecore