1,125 research outputs found

    Fractional quantization of ballistic conductance in 1D hole systems

    Full text link
    We analyze the fractional quantization of the ballistic conductance associated with the light and heavy holes bands in Si, Ge and GaAs systems. It is shown that the formation of the localized hole state in the region of the quantum point contact connecting two quasi-1D hole leads modifies drastically the conductance pattern. Exchange interaction between localized and propagating holes results in the fractional quantization of the ballistic conductance different from those in electronic systems. The value of the conductance at the additional plateaux depends on the offset between the bands of the light and heavy holes, \Delta, and the sign of the exchange interaction constant. For \Delta=0 and ferromagnetic exchange interaction, we observe additional plateaux around the values 7e^{2}/4h, 3e^{2}/h and 15e^{2}/4h, while antiferromagnetic interaction plateaux are formed around e^{2}/4h, e^{2}/h and 9e^{2}/4h. For large \Delta, the single plateau is formed at e^2/h.Comment: 4 pages, 3 figure

    A Continuum Description of Rarefied Gas Dynamics (I)--- Derivation From Kinetic Theory

    Full text link
    We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple gas. As in the works of Hilbert, of Chapman and of Enskog, we expand in the mean flight time of the constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying the formulae at each order by using results from previous orders. In this way, we are able to derive a new set of fluid dynamical equations from kinetic theory, as we illustrate here for the relaxation model for monatomic gases. We obtain a stress tensor that contains a dynamical pressure term (or bulk viscosity) that is process-dependent and our heat current depends on the gradients of both temperature and density. On account of these features, the equations apply to a greater range of Knudsen number (the ratio of mean free path to macroscopic scale) than do the Navier-Stokes equations, as we see in the accompanying paper. In the limit of vanishing Knudsen number, our equations reduce to the usual Navier-Stokes equations with no bulk viscosity.Comment: 16 page

    Polyclonal Aptamers for Specific Fluorescence Labeling and Quantification of the Health Relevant Human Gut Bacterium Parabacteroides distasonis

    Get PDF
    Single-stranded DNA aptamers as affinity molecules for the rapid, reliable detection of intestinal bacteria are of particular interest to equip health systems with novel robust and cheap diagnostic tools for monitoring the success of supplementation strategies with selected probiotic gut bacteria in the fight against major widespread threats, such as obesity and neurodegenerative diseases. The human gut bacterium Parabacteroides distasonis (P. distasonis) is positively associated with diseases such as obesity, non-alcoholic fatty liver disease and multiple sclerosis with reduced cell counts in these diseases and is thus a promising potential probiotic bacterium for future microbial supplementation. In this paper we report on the evolution of a specific polyclonal aptamer library by the fluorescence based FluCell-SELEX directed against whole cells of P. distasonis that specifically and efficiently binds and labels P. distasonis. The aptamer library showed high binding affinity and was suited to quantitatively discriminate P. distasonis from other prominent gut bacteria also in mixtures. We believe that this library against a promising probiotic bacterium as a prototype may open new routes towards the development of novel biosensors for the easy and efficient quantitative monitoring of microbial abundance in human microbiomes in general

    Personal non-commercial use only

    Get PDF
    ABSTRACT. Objective. Rheumatoid arthritis (RA) is a chronic inflammatory polyarthritis; while the cause is unknown, it has been speculated that an infectious agent could be the trigger for the disease. Numerous attempts at isolating an agent have been unsuccessful. Our purpose was to identify a virus from diseased tissue from a patient with RA. Methods. Diseased tissue taken at the time of knee replacement surgery from a patient with RA was inoculated into several cell lines and observed for cytopathic effect. Cells from the tissue were also grown as explants and were examined for viruses. Synovial fluid drawn 4 years prior to the surgery and frozen at -70°C was also inoculated into cell lines. Following the development of a cytopathic effect and identification of the agent, sera from 50 patients with rheumatoid factor (RF)-negative RA were examined for IgM antibodies to the agent. Results. After many inoculations and numerous subpassages, measles virus was identified in 6 cell lines inoculated with either the minced tissue or synovial fluid. Six cell lines co-cultivated with one or more of 9 explants also showed the presence of measles virus. Measles virus was confirmed by immunofluorescence and by neutralization. Eleven of 50 (22%) sera samples from patients with RF-negative RA had IgM antibodies to measles virus recombinant nucleoprotein. Conclusion. There is an association between measles virus an

    Nonlinear Modes of Liquid Drops as Solitary Waves

    Full text link
    The nolinear hydrodynamic equations of the surface of a liquid drop are shown to be directly connected to Korteweg de Vries (KdV, MKdV) systems, giving traveling solutions that are cnoidal waves. They generate multiscale patterns ranging from small harmonic oscillations (linearized model), to nonlinear oscillations, up through solitary waves. These non-axis-symmetric localized shapes are also described by a KdV Hamiltonian system. Recently such ``rotons'' were observed experimentally when the shape oscillations of a droplet became nonlinear. The results apply to drop-like systems from cluster formation to stellar models, including hyperdeformed nuclei and fission.Comment: 11 pages RevTex, 1 figure p

    A Polyclonal Selex Aptamer Library Directly Allows Specific Labelling of the Human Gut Bacterium Blautia producta without Isolating Individual Aptamers

    Get PDF
    Recent studies have demonstrated that changes in the abundance of the intestinal bacterium Blautia producta, a potential probiotic, are closely associated with the development of various diseases such as obesity, diabetes, some neurodegenerative diseases, and certain cancers. However, there is still a lack of an effective method to detect the abundance of B. producta in the gut rapidly. Especially, DNA aptamers are now widely used as biometric components for medical testing due to their unique characteristics, including high chemical stability, low production cost, ease of chemical modification, low immunogenicity, and fast reproducibility. We successfully obtained a high-affinity nucleic acid aptamer library (B.p-R14) after 14 SELEX rounds, which efficiently discriminates B. producta in different analysis techniques including fluorometric suspension assays or fluorescence microscopy from other major gut bacteria in complex mixtures and even in human stool samples. These preliminary findings will be the basis towards aptamer-based biosensing applications for the fast and reliable monitoring of B. producta in the human gut microbiome

    Velocity quantization approach of the one-dimensional dissipative harmonic oscillator

    Full text link
    Given a constant of motion for the one-dimensional harmonic oscillator with linear dissipation in the velocity, the problem to get the Hamiltonian for this system is pointed out, and the quantization up to second order in the perturbation approach is used to determine the modification on the eigenvalues when dissipation is taken into consideration. This quantization is realized using the constant of motion instead of the Hamiltonian.Comment: 10 pages, 2 figure
    corecore