17,183 research outputs found
Hydrogen and helium abundances in neutron star atmospheres
Identification of neutron stars by hydrogen and helium spectral line observation
Quasi-Particle Degrees of Freedom versus the Perfect Fluid as Descriptors of the Quark-Gluon Plasma
The hot nuclear matter created at the Relativistic Heavy Ion Collider (RHIC)
has been characterized by near-perfect fluid behavior. We demonstrate that this
stands in contradiction to the identification of QCD quasi-particles with the
thermodynamic degrees of freedom in the early (fluid) stage of heavy ion
collisions. The empirical observation of constituent quark ``'' scaling of
elliptic flow is juxtaposed with the lack of such scaling behavior in
hydrodynamic fluid calculations followed by Cooper-Frye freeze-out to hadrons.
A ``quasi-particle transport'' time stage after viscous effects break down the
hydrodynamic fluid stage, but prior to hadronization, is proposed to reconcile
these apparent contradictions. However, without a detailed understanding of the
transitions between these stages, the ``'' scaling is not a necessary
consequence of this prescription. Also, if the duration of this stage is too
short, it may not support well defined quasi-particles. By comparing and
contrasting the coalescence of quarks into hadrons with the similar process of
producing light nuclei from nucleons, it is shown that the observation of
``'' scaling in the final state does not necessarily imply that the
constituent degrees of freedom were the relevant ones in the initial state.Comment: 9 pages, 7 figures, Updated text and figure
Nonet Symmetry and Two-Body Decays of Charmed Mesons
The decay of charmed mesons into pseudoscalar (P) and vector (V) mesons is
studied in the context of nonet symmetry. We have found that it is badly broken
in the PP channels and in the P sector of the PV channels as expected from the
non-ideal mixing of the \eta and the \eta'. In the VV channels, it is also
found that nonet symmetry does not describe the data well. We have found that
this discrepancy cannot be attributed entirely to SU(3) breaking at the usual
level of 20--30%. At least one, or both, of nonet and SU(3) symmetry must be
very badly broken. The possibility of resolving the problem in the future is
also discussed.Comment: 9 pages, UTAPHY-HEP-
Recommended from our members
Synthesis and Study of Olefin Metathesis Catalysts Supported by Redox-Switchable Diaminocarbene 3 Ferrocenophanes
A redox-switchable ligand, N,N'-dimethyldiaminocarbene[3]ferrocenophane (5), was synthesized and incorporated into a series of Ir- and Ru-based complexes. Electrochemical and spectroscopic analyses of (5) Ir(CO)(2)Cl (15) revealed that 5 displayed a Tolman electronic parameter value of 2050 cm(-1) in the neutral state and 2061 cm(-1) upon oxidation. Moreover, inspection of X-ray crystallography data recorded for (5) Ir(cis,cis-1,5-cyclooctadiene)Cl (13) revealed that 5 was sterically less bulky (%V-Bur = 28.4) than other known diaminocarbene[3]ferrocenophanes, which facilitated the synthesis of (5)(PPh3)Cl2Ru-(3-phenylindenylid-1-ene) (18). Complex 18 exhibited quasi-reversible electrochemical processes at 0.79 and 0.98 V relative to SCE, which were assigned to the Fe and Ru centers in the complex, respectively, based on UV-vis and electron pair resonance spectroscopic measurements. Adding 2,3-dichloro-5,6-dicyanoquinone over the course of a ring-opening metathesis polymerization of cis, cis-1,5-cyclooctadiene catalyzed by 18 ([monomer](0)/[18](0) = 2500) reduced the corresponding rate constant of the reaction by over an order of magnitude (pre-oxidation: k(obs) = 0.045 s(-1); post-oxidation: k(obs) = 0.0012 s(-1)). Subsequent reduction of the oxidized species using decamethylferrocene restored catalytic activity (post-reduction: k(obs) = up to 0.016 s(-1), depending on when the reductant was added). The difference in the polymerization rates was attributed to the relative donating ability of the redox-active ligand (i.e., strongly donating 5 versus weakly donating 5(+)) which ultimately governed the activity displayed by the corresponding catalyst.U. S. Army Research Office W911NF-09-1-0446Chemistr
Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults
A multiple case study was conducted in order to assess three leading theories of developmental dyslexia: the phonological, the magnocellular (auditory and visual) and the cerebellar theories. Sixteen dyslexic and 16 control university students were administered a full battery of psychometric, phonological, auditory, visual and cerebellar tests. Individual data reveal that all 16 dyslexics suffer from a phonological deficit, 10 from an auditory deficit, 4 from a motor deficit, and 2 from a visual magnocellular deficit. Results suggest that a phonological deficit can appear in the absence of any other sensory or motor disorder, and is sufficient to cause a literacy impairment, as demonstrated by 5 of the dyslexics. Auditory disorders, when present, aggravate the phonological deficit, hence the literacy impairment. However, auditory deficits cannot be characterised simply as rapid auditory processing problems, as would be predicted by the magnocellular theory. Nor are they restricted to speech. Contrary to the cerebellar theory, we find little support for the notion that motor impairments, when found, have a cerebellar origin, or reflect an automaticity deficit. Overall, the present data support the phonological theory of dyslexia, while acknowledging the presence of additional sensory and motor disorders in certain individuals
Temporal integration for amplitude modulation in childhood: Interaction between internal noise and memory
It is still unclear whether the gradual improvement in amplitude-modulation (AM) sensitivity typically found in children up to 10 years of age reflects an improvement in “processing efficiency” (the central ability to use information extracted by sensory mechanisms). This hypothesis was tested by evaluating temporal integration for AM, a capacity relying on memory and decision factors. This was achieved by measuring the effect of increasing the number of AM cycles (2 vs 8) on AM-detection thresholds for three groups of children aged from 5 to 11 years and a group of young adults. AM-detection thresholds were measured using a forced-choice procedure and sinusoidal AM (4 or 32 Hz rate) applied to a 1024-Hz pure-tone carrier. All age groups demonstrated temporal integration for AM at both rates; that is, significant improvements in AM sensitivity with a higher number of AM cycles. However, an effect of age is observed as both 5–6 year olds and adults exhibited more temporal integration compared to 7–8 and 10–11 year olds at both rates. This difference is due to: (i) the 5–6 year olds displaying the worst thresholds with 2 AM cycles, but similar thresholds with 8 cycles compared to the 7–8 and 10–11 year olds, and, (ii) adults showing the best thresholds with 8 AM cycles but similar thresholds with 2 cycles compared to the 7–8 and 10–11 year olds. Computational modelling indicated that higher levels of internal noise combined with poorer short-term memory capacities in children accounted for the developmental trends. Improvement in processing efficiency may therefore account for the development of AM detection in childhood
Development of temporal auditory processing in childhood: Changes in efficiency rather than temporal-modulation selectivity
The ability to detect amplitude modulation (AM) is essential to distinguish the spectro-temporal
features of speech from those of a competing masker. Previous work shows that AM sensitivity
improves until 10 years of age. This may relate to the development of sensory factors (tuning of
AM filters, susceptibility to AM masking) or to changes in processing efficiency (reduction in internal noise, optimization of decision strategies). To disentangle these hypotheses, three groups of
children (5–11 years) and one of young adults completed psychophysical tasks measuring thresholds for detecting sinusoidal AM (with a rate of 4, 8, or 32 Hz) applied to carriers whose inherent
modulations exerted different amounts of AM masking. Results showed that between 5 and 11
years, AM detection thresholds improved and that susceptibility to AM masking slightly increased.
However, the effects of AM rate and carrier were not associated with age, suggesting that sensory
factors are mature by 5 years. Subsequent modelling indicated that reducing internal noise by a factor 10 accounted for the observed developmental trends. Finally, children’s consonant identification
thresholds in noise related to some extent to AM sensitivity. Increased efficiency in AM detection
may support better use of temporal information in speech during childhood
Research and applications: Artificial intelligence
The program is reported for developing techniques in artificial intelligence and their application to the control of mobile automatons for carrying out tasks autonomously. Visual scene analysis, short-term problem solving, and long-term problem solving are discussed along with the PDP-15 simulator, LISP-FORTRAN-MACRO interface, resolution strategies, and cost effectiveness
Functional correlates of optic flow motion processing in Parkinson’s disease
The visual input created by the relative motion between an individual and the environment, also called optic flow, influences the sense of self-motion, postural orientation, veering of gait, and visuospatial cognition. An optic flow network comprising visual motion areas V6, V3A, and MT+, as well as visuo-vestibular areas including posterior insula vestibular cortex (PIVC) and cingulate sulcus visual area (CSv), has been described as uniquely selective for parsing egomotion depth cues in humans. Individuals with Parkinson’s disease (PD) have known behavioral deficits in optic flow perception and visuospatial cognition compared to age- and education-matched control adults (MC). The present study used functional magnetic resonance imaging (fMRI) to investigate neural correlates related to impaired optic flow perception in PD. We conducted fMRI on 40 non-demented participants (23 PD and 17 MC) during passive viewing of simulated optic flow motion and random motion. We hypothesized that compared to the MC group, PD participants would show abnormal neural activity in regions comprising this optic flow network. MC participants showed robust activation across all regions in the optic flow network, consistent with studies in young adults, suggesting intact optic flow perception at the neural level in healthy aging. PD participants showed diminished activity compared to MC particularly within visual motion area MT+ and the visuo-vestibular region CSv. Further, activation in visuo-vestibular region CSv was associated with disease severity. These findings suggest that behavioral reports of impaired optic flow perception and visuospatial performance may be a result of impaired neural processing within visual motion and visuo-vestibular regions in PD.Published versio
- …