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ABSTRACT

The primary objectives of this program are to investigate and

develop techniques in artificial intelligence and apply them to the

control of a mobile automaton, enabling it to carry out tasks, autono-

mously, in a realistic laboratory environment.

As part of technique developments, there are reports of progress in

scene analysis, and short-term and long-term problem solving.

Scene analysis is aimed at providing the automaton system with its

•primary source of information about its environment. Such information

(primarily visual) must be entered into appropriate internal models in

a form useful for the problem-solving and planning systems. Several

parallel approaches--line analysis and region analysis methods—are

discussed, together with how knowledge of the actual environment is

used to help interpret the processed information.

The short-term problem-solving research is primarily aimed at pro-

viding new tools and concepts for coping with tasks of increased com-

plexity to be implemented in the next year. A major software tool, QA3

(a question-answering system using theorem proving by resolution), will

be revised and upgraded, permitting experimentation with new strategies

and also allowing the theorem prover to be used in planning. Underway

are implementations of a new n-tuple model and set of opera tors—routines

that, when executed according to some plan, cause the robot to perform

specific actions. Both primitive and more complex operators are being

defined; these are callable in correct sequence by a planner. The plan-

ner organization is the subject of considerable research, which includes
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the possible use of a GPS-like deductive mechanism, perhaps together

with the revised QA3 system. Finally, executive routines are being

developed to supervise execution of operator sequences and updating of

models, assessing cost-effectiveness of plans, making decisions such as

regarding the need for new sensory information or abandonment of further,

planning in favor of execution, etc.

The long-term problem-solving research is devoted to design and

implementation of a general-purpose formal problem-solving system, QA4,

based on mechanized theorem proving in .higher-order logic. It is being

designed to emphasize the role of semantic information processing and

flexible control strategies. It will- provide a rich language permitting

syntax and semantics of any part of the system to be expressed in its

own language, and will include set operations bridging logical and

computational operations. It is expected to provide tools and tech-

niques suitable for long-range research in such diverse fields as auto-

matic program writing and robot planning.

xv



CONTENTS

ABSTRACT . iii

LIST OF ILLUSTRATIONS vii

I INTRODUCTION 1

II THE VISUAL-PROCESSING SYSTEM 3

A. Introduction 3
B. Line Analysis 4
C. Region Analysis 7

III THE PDF-10 COMPUTING SYSTEM 13

A. Status of PDP-10/PDP-15 Computer Hardware System ... 13
B. System Programming 13

1. Monitor Modifications 15
2. PDP-15 Software 16

3. PDF-10 User Programs . . 16

IV SHORT-TERM PROBLEM SOLVING 19

A. Software Tools 19

1. QA3 19
2. The LISP System - 24
3. Interlanguage Communication 25
4. Source Language Flexibility 25

B. Designing a Problem-Solving System 26

1. Problem Definition 27

2. The Model 27
3. Operators 29
4. The Planner 37
5. The Executive 42



CONTENTS (Concluded)

.V LONG-TERM PROBLEM SOLVING 47

A. Introduction 47

B. The Logic Language 48

1. The Class of Expressions 48
2. Primitive Operations 52

C. Current Implementation 54

VI HARDWARE AND MAINTENANCE 59

REFERENCES 61

APPENDIX A "PDP-15 Simulator," AI Group Technical Note 25,
Stanford Research Institute, Menlo Park, California

(April 1970) 63

APPENDIX B "A LISP-FORTRAN-MACRO Interface for the PDF-10
Computer," AI Group Technical Note 16, Stanford
Research Institute, Menlo Park, California

(November 1969) 77

APPENDIX C "Some Remarks on Resolution .Strategies," AI Group
Technical Note 28, Stanford Research Institute,

Menlo Park, California (April 1970) 91

APPENDIX D "LISP TRACE Package for PDF-10," AI Group Technical
Note 27, Stanford Research Institute, Menlo Park,

California (April 1970) 101

APPENDIX E "A LISP Implementation of BIP," AI Group Technical
Note 22, Stanford Research Institute, Menlo Park,
California (February 1970) 109

APPENDIX F "A Cost-Effectiveness Basis for Robot Problem-Solving

and Execution," AI Group Technical Note (not yet
released), Stanford Research Institute, Menlo Park,
California (January 1970) 125

VI



ILLUSTRATIONS

Figure 1 Demonstration of Line-Analysis Approach 8

Figure 2 Elementary Regions in a Digitized Picture 9

Figure 3 PDF-10 Configuration 14

Vll



I INTRODUCTION

The primary objectives of this program are, firstly, to investigate
/

and develop techniques in artificial intelligence, and, secondly, to

apply them to the control of a mobile automaton carrying out tasks in a

realistic environment. These tasks would be such that normally require

human intelligence in sensing, problem solving, planning, and execution.

By developing artificial intelligence techniques sufficiently general to

have wide applicability for Government and industrial use, we shall be

able to devise integrated systems capable of replacing humans in situa-

tions that are either environmentally hostile or too remote for satisfac-

tory communication and control, or that require very rapid and tireless

response to sensed signals.

This project began in October 1969 as a direct continuation of work

performed and reported on under previous contracts.1)2* This report

describes interim results of continuing research in visual scene analy-

sis, short-term problem solving, and long-term problem solving; it also

documents the status of the changeover from an SDS-940 to a PDP-10 computer

system. A number of additional topics that have been deemed relevant and

important are included as appendices.

*
References are listed at the end of this report.
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II THE VISUAL-PROCESSING SYSTEM

A. Introduction

The vision system for the automaton provides it with a primary

source of information about its environment. This information must be

obtained from a digitized television picture and from general knowledge

of the characteristics of the environment. The information obtained

must be entered in the model in a form useful for the problem-solving

system.

Our current work is a continuation of two basic approaches followed

in the past—line analysis and region analysis. Line analysis exploits

the fact that the walls, doorways, and most of the other objects in the

automaton's environment have straight-line boundaries. Although noise

and limited gray-scale resolution prevent detection of all of these

boundaries, it is often possible to isolate, locate, and identify objects

from this kind of information. Region analysis exploits the fact that

regions of uniform intensity are either significant in themselves, or

can be merged together to form significant entities. We have developed

various procedures for merging and describing regions, and for using

these descriptions to analyze the scene.*

*
A description of our previous work on the visual system is given in

Ref. 2. More detailed technical descriptions of our line-analysis

techniques are given in Ref. 3, and our region-analysis techniques

are described in Ref. 4 and 5.



Much of our recent work on the vision system has involved converting

routines from the SDS-940 to the PDF-10. However, during this conversion

process we have modified many of these programs, both for increased gen-

erality and increased efficiency. The following sections describe these

changes and their consequences for our future work.

B. Line Analysis

The future tasks being planned for the automaton require it to func-

tion in the corridors and adjoining rooms. Straight-line boundaries occur

throughout this environment, but with fewer constraints than are present

in a single room. Furthermore, poorer lighting conditions and the possi-

bility of encountering visually complex office interiors complicate the

scene-analysis problems.

One of the most useful pieces of infomation that can be extracted

from the corridor picture is the location of floor/wall boundaries. A

baseboard tracking routine2 developed for use in our experimental room

has been modified for corridor applications. The same basic steps (ac-

quisition, tracking, and constrained line fitting) are still employed,

but some of these procedures have been significantly changed.

The acquisition and tracking routines required only minor changes.

As before, the picture is systematically searched column by column from

left to right. The intensity values in each column are examined to find

any local intensity minima below the horizon line. Each minimum found is

given a score determined by its darkness and deviation from ideal width.

If the score is sufficiently high, the program switches to the tracking

mode,'which limits the column search to a neighborhood of the previously

acquired point.

When this program was run on some 66 of our corridor pictures, it

was found that reasonably good results could be obtained with some minor



readjustments of thresholds. However, the best results were not as good

as those obtained regularly in the experimental room. This was due to

several factors, including the reduced contrast in the corridors, the

greater frequency of interruptions by doorways, increased problems with

shadows and reflections, and occasional catastrophic errors arising when

the tracker entered a cluttered area such as the interior of an office

seen through an open door. Despite these problems, it was decided to

leave the tracking program unchanged and to modify the line-fitting pro-

gram to cope with the new environment.

The basic knowledge of the environment used by the line-fitting rou-

tine is that walls are either perpendicular or parallel, arid that corri-

dors have a certain minimum width. In terms of the picture, the first

requirement means that when floor/wall boundaries are extended to the

horizon, they should pass through one or the other of two vanishing

points. The x-coordinates, x and x*, of these vanishing points are

related by

f2
xx''

2
cos cp

where f is the distance from the lens center to the effective image plane

and cp is the tilt angle of the camera.3 The second requirement is used

to screen out reflected baseboards that might be mistakenly identified

as close, parallel walls.

The line-fitting routine effectively operates on a binary picture

formed from the baseboard coordinates returned by the tracker. This

"picture" has at most one point per column, and typically contains a

number of fragments of the true baseboard, plus a number of short spur-

ious segments. The length of a segment is important evidence favoring

its validity as baseboard, but long pieces of baseboard are frequently
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broken into short fragments. Thus, one of the first steps is to try to

construct longer segments, called pseudo segments, from the fragments.

This process begins by ordering the segments by length. A straight

line is fit locally to the longest segment and extended across the picture.

By perturbing the end points of this long line, 25 candidate lines are

obtained, and the one that fits the "picture" data best is selected.

Typically, this line fits both the original segment and several other

segments well, and all such segments are said to be "explained" by the

long line. A score that measures the quality of fit is computed for each

segment, and all explained segments are flagged. These segments are pro-

jected orthogonally onto the long line, and a pseudo segment is defined

by the limits of these projections. This process is then repeated for

the remaining segments until no segments are unexplained.

At this point the longest pseudo segment is assumed to run along a

valid baseboard. This segment is extended to the horizon and is used to

define the two vanishing points. The next step is to test the remaining

pseudo segments in turn to see if they are either parallel to or perpen-

dicular to the first one. This is done by comparing the sum of the scores

for the segments explained by the pseudo segment to the sum obtained under

the constraint that the pseudo segment must pass through one or the other

of the two vanishing points. If the constrained result exceeds half of

the unconstrained result, the pseudo segment is saved.

Various other tests are applied to the pseudo segments, including

tests on the minimum allowed length, the maximum allowed number of pseudo

segments passing through a given vanishing point, and the minimum allowed

three-space distance between pseudo segments representing parallel walls.

In addition, we intend to introduce tests to determine whether or not an

area is sufficiently cluttered to reject the report of the tracker as

being unreliable.



While this may seem to be a considerable amount of computation for .

a limited task, it is a fundamental step in the scene analysis and must

be performed reliably. With the exception of problems encountered in

cluttered areas, we have found this procedure to be quite reliable.

Figure 1 illustrates the type of scenes that can be handled routinely.

Figure l(a) shows the view seen on the television monitor. The points

found by the tracker are superimposed on a gradient picture in Figure l(b);

vertical lines mark the beginning of each segment found.. The segments

long enough to be kept are shown in Figure l(c). A long-line extension

of the first pseudo segment superimposed on the binary picture produced

by the tracker is shown in Figure l(d). Finally, the long lines passing

the various tests are shown in Figure l(e). Clearly, this information

provides a significant start in the analysis of this scene.

C. Region Analysis

The goal of region analysis is the partitioning of a scene into

regions such as wall areas, floor areas, and faces of objects, which

can then be grouped and identified. The process begins by partitioning

the picture into elementary regions of constant intensity. Various

heuristics are used to grow these regions by merging them with their

neighbors. When no further growth can be obtained by simple heuristics,

the resulting regions are "described" by fitting their boundaries with

straight lines, and higher level analysis begins. Some initial tech-

niques have been investigated, 2>4 but in this area considerable work

remains to be done.

Most of our recent work has involved converting basic routines

originally written in LISP for the SDS-940 to more efficient assembly

language versions for the PDF-10. This has resulted in quite significant

reductions in the time required to process a picture, and should allow the

investigation of techniques that were previously beyond serious consideration,
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(d) FIRST LONG LINE
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FIGURE 1 STEPS IN BASEBOARD TRACKING AND FITTING



Three of the most basic routines are PARTITION, NEIGHBORS, and

MERGE. PARTITION finds the elementary homogeneous regions in a digitized

picture; its operation will be discussed below in some detail. Figure 2(a)

shows a simple 5-by-5 digitized picture as an array of intensity values,

and Figure 2(b) shows the 5 elementary regions that would be found by

PARTITION. Note that each region is surrounded by a directed boundary.

The boundary of a region may have several components, the outside component

running counterclockwise and the inside components running clockwise.
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FIGURE 2 ELEMENTARY REGIONS IN A DIGITIZED PICTURE

PARTITION finds these regions in two passes through the picture.

During the first pass each picture element is compared with its four

principal neighbors, and if a difference in intensity is found an appro-

priate elementary vector is inserted in the picture array. For example,

if the neighbor to the right has a different intensity, a vector pointing



upward is associated with the picture element in question. At the end

of the first pass a partition such as the one illustrated in Figure 2(b)

is obtained.

The purpose of the second pass is to build a table that identifies

the regions by number, links all of the components of a boundary, and

is done by scanning the rows of the picture from left to right, starting

at the top and moving to the bottom. Two marking bits are assigned to

every picture•element, one for its upward-pointing vector and one for

its downward-pointing vector. .Initially, every element is unmarked,

and certain boundary elements are marked during the second pass.

As the scan proceeds, each element is inspected to see if it has

either an unmarked downward-pointing vector or an unmarked upward-

pointing vector. The first case corresponds to an external boundary.

The scanning process is temporarily interrupted as the contour is

followed and the downward-pointing and upward-pointing vectors along

the boundary are marked. When the initial element is encountered again,

it is assigned a special mark, a new region number is added to the region

table. The specially marked element on this component of the boundary

provides the link between this component and other components through

the region table.

In the second case the contour is again followed and marked. This

case corresponds to an interior boundary, and, while the initial element

again receives a special mark and a pointer is set up to the region

table, no new region number is created. Instead, the region number

associated with the external contour is found by stepping to the left

until a marked element is found, and by following that contour to

the specially marked cell that points to the proper entry in the region

table. In this way each region receives a unique number associated

with its external contour. The region to which any picture element

10



belongs can easily be found by a similar process of stepping to the

left until a boundary is encountered, following the boundary to the

specially marked cell, and going to the region table.

In the initial partition of the picture, all of the elements in a

region have the same intensity. Subsequent operations produce non-

homogeneous regions by merging neighboring regions. However, the basic

data structure describing these regions remains the same. The basic

operation needed to merge two regions is merely the erasing of elementary

vectors along the common boundary and the proper updating of the region

table. The criteria involved for merging two regions usually involve the

difference in intensity along their common boundaries. NEIGHBORS is a

basic routine that finds the neighbors of a given region and computes

this difference in intensity. MERGE does the erasing and updating

required when two neighboring regions are merged. The coding of these

basic routines in assembly language has greatly increased their efficiency,

with PARTITION running more than 250 times faster than it did when written

in LISP. These routines will form part of a library of subroutines that

should be very useful for our future vision research.

11
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Ill THE PDF-10 COMPUTING SYSTEM

A. Status of PDP-10/PDP-15 Computer Hardware System

The system configuration is as shown in Figure 3. At present,

the following subsystems are installed and operative:

PDF-10 computer

Ampex core memory

Total core: 192K words of memory

Century disk drives (including ICC controller)

Video A/D converter

We expect to complete the system by the following schedule:

PDP-15: To be delivered on 15 May ,

Bryant drum: To be delivered on 21 April

Adage display: To be delivered on 30 May

Second DC10B: To be delivered on 15 June

AA05B: To be delivered on 15 June

B. System Programming

The system programming that has been done in the last three months

can be divided into three categories:.

(l). Monitor modifications and diagnostic programs for new
equipment used on the PDP-10

(2) Software for the PDP-15

(3) User programs.

. The third of these categories was by far the largest. The follow-

ing is a description of the programs produced in each category.

13
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1. Monitor Modifications

The first piece of equipment to require program changes to the

monitor was the disk pack controller. The diagnostics were supplied (by
s •

prior agreement) by Interactive Computing Corp., who also provided the

gross changes to the PDF-10 monitor. These sufficed as long as we had

only two small-capacity (single density, 10 surface) disk pack drives.

When we upgraded to the final configuration of four large-capacity

(double density, 21 surface) disk packs, the monitor routine called

DISKSER had to be changed to lengthen the STAT-BLOCK size. Also, the

diagnostic had to be modified to get proper timing over the four disk

packs.

The next equipment considered was the Bryant drum. Diagnostics

have been written and checked out (insofar as possible without the equip-

ment here). The modifications to the monitor (swapper and file system)

are currently in progress. The diagnostic was written in a standard

way, checking random patterns for parity and errors, checking timing

specifications, etc.

Programs for the A/D converter to be used with the TV was in-

corporated into the monitor. At this time a push button simulates the

robot control. The picture is entered into a temporarily created buffer,

which is then written onto disk in the user's area. Any swapping is in-

hibited during picture receipt.

A preliminary design has been worked out for the DA25 inter-

processor buffer that interfaces between the PDP-10 and PDP-15. It has

not yet been incorporated into the monitor. Essentially it treats the

DA25 as another device on the PDF-10's memory.

15



2. PDF-15 Software

In order to start work on the PDP-15 before it arrived, a

simulator was written on the PDP-10. Details are described in Technical

Note 25, which is included here as Appendix A. All PDP-15 work makes

use of this simulator.

The first program to be checked out was the standard DEC MACRO

assembler. It had to be rewritten because it depended on a DEC monitor

in the PDP-15. Space and timing do not permit us to use the DEC monitor,

so the assembler was modified to be self-contained. All monitor calls

were changed to subroutines.

The robot drivers are being designed, as is the interrupt

structure. We are making educated guesses where we lack information

on PDP-15 timing.

The Adage display, which will run off of the PDP-15, has had

some program design. The standard patterns were received from Adage

and are being translated to PDP-15. Some other diagnostics to check

timing, single-cycle operations, and PDP-15 compatibility are being

written.

3. PDP-10 User Programs

A large effort was put into getting LISP to work on the PDP-10.

Some storage allocation bugs were fixed. An effort to improve its facil-

ities in the area of debugging and backtrace facilities has been started.

A LISP-to-FORTRAN interface was written. Details of this are

described in Technical Note 16, which is included here as Appendix B.

Also, some modifications were made so that PDP-10 binary files and

FORTRAN-produced binary files would be compatible.

16



A set of robot programs was written for the PDP-10 (so as to

use the N-tuple storage system). These generate elementary driver

commands. A PDP-15 and robot simulator was written to check this out.

A routine to convert XDS 940 mag tapes to DEC-tape format was

written.

Certain programming systems that were developed elsewhere have

been implemented or copied on our system; among then are PILOT, FAIL,

SAIL, STOPGAP II, (and TREE META. Details of these languages can be

found elsewhere.

The rest of the programs were all modifications to the time-

sharing monitor. A new scheduler was implemented that is very similar

to the one used at Stanford University written by Andy Moorer. It al-

lows more efficient use of the PDP-10 by our users because we have large,

compute-bound jobs (typically) and DEC'S monitor assumes a huge amount

of very small, I/O or TTY bound jobs. Along with this, a new routine

to gather statistics of performance and usage was written.

The LOGIN routine was changed to eliminate passwords. The

LOGOUT routine was changed to eliminate the necessity of checking all

files to indicate which ones must be saved. Only those that were newly

created need be checked. Most of the DEC accounting routines were

eliminated.

Finally a routine that allows simultaneous access of the

printer was written. This was done by creating a disk file of the

print data for anyone accessing a busy printer. The monitor always

scans to see if, when the printer is free, it has a file to be printed.

17
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IV SHORT-TERM PROBLEM SOLVING

During the period covered by this report this subgroup has been

working primarily in two areas: the development of higher-level soft-

ware tools for use with our new PDF-10 computer system, and the design

of a new problem-solving structure that will be adequate for coping with

robot tasks in the time frame of the next one to three years.

A. Software Tools

1. QA3

QA3 is a question-answering system that uses theorem proving

by resolution in first-order predicate calculus as its deductive mecha-

nism. It was developed in the SRI Artificial Intelligence Group during

the past several years, and was the basis for the previous robot problem-

solving system. Since it is likely that at least the theorem-proving

sections of QA3 will play a major role in any new problem-solving system,

the installation of QA3 on the PDP-10 has been a high-priority task. This

task, which was considerably more complicated than we anticipated, is now

largely complete.

a. Present Status

A skeletal version of QA3 is presently running inter-

pretively on the PDP-10. Functions that have been debugged are those

used for I/O, and most of the "operational" functions (i.e., those used

in proving theorems). Since modifications and additions to the code are

19



being made continuously, the program will be in a state of flux for some

time. Until a larger part of the code seems firm, QA3 will probably not

be compiled. Very few modifications have been made that are visible to

the user. Almost all changes have been syntactic (most of QA3 was coded

extremely efficiently by Bob Yates using BBN LISP on the SDS 940--

unfortunately, much of this code was incompatible with Stanford LISP

on the PDP-10 and had to be patched).

Features that are not yet implemented in QA3 are the

FILE-handling capabilities, STRATEGY options, and the facility for

stopping and continuing a proof. FILES and strategies will be included

in the near future, but stopping a proof requires an interrupt feature

that is not yet implemented in PDP-10 LISP. (For further details about

QA3, see "A User's Guide to the QA3.5 Question-Answering System,"

Appendix A to Ref. 2.)

,b. Recent Improvements

Several changes have recently been made to make QA3 more

flexible or more efficient. For example, the "quick test for subsumption'

is an important time saver.

The basis of the test is the fact that a necessary (but

not sufficient) condition for clause Cl to subsume clause C2 is that the

set of symbols (function symbols and predicate letters) of Cl must be a

subset of the set of symbols of C2. A necessary (and sufficient) con-

dition for A c B is that A f| B = cp. The implementation uses logical

words (bit codes) to represent the set of symbols and checks to see if

CC1 A CC2 = 0 (where CC1 is the code for clause Cl and CC2 is the code

for C'2).

20



Every symbol in the system is assigned a bit in a word

(this is that symbol's code). If there are more symbols than bits, the

assignment will not be unique. This is all right (although less efficient

than a unique representation) since the test is for a necessary condition.

The code for a clause is computed by OR'ing together the

codes for all of its symbols, and this code is stored on the property

list of the clause. The test function then retrieves these codes, com-

plements the code for C2, AND's them together, and returns a value speci-

fying whether the result is zero or not.

When a subsumption is attempted, a function is called first

that computes CC1 and CC2 and returns T or NIL appropriately. Since this

test is much faster than the actual subsumption calculation, it acts as

a "quick filter" and results in substantial time saving.

Appendix C contains discussions of additional features

that have been added to QA3 and how they may be used.

c. Future Plans

Experience with QA3 has suggested some changes and addi-

tional features that will make it a more effective system for a variety

of applications including robot problem solving. Some of these changes

have now been specified and partially implemented.

This next version of QA3 will include a major revision

to allow experimentation with different strategies, and also to allow

the theorem prover to be used in a robot planner. The revised system

will contain all the executive-level features of the current one. In

addition, it will be compatible with the input language for QA4 (see

Section IV, "Long-Term Problem Solving") in order to allow for a possible

future merge of the systems. The program will be written to allow for
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easy modification (the present system is coded so tightly that it is

impossible to make "clean" changes), and will be well documented to

further facilitate this.

One aim of the new system will be to make it more useful

for problems involving the manipulation of small, finite sets. To aid

in this, two new logical quantifiers, AFS and EFS (for universal and

existential quantification of variables from within a finite set) have

been defined and will be added to QA3 . They are defined in context as

follows:

is equivalent to

(Vx ..... z)(xex A ... A Zez.=> p(Xf . . . ,z)),

and similarly

(EFS(x,X),...,(z,z))P(x,. ...z)

is equivalent to

(3x, . . . ,z)(xeX A ... A zez => P(X,.. . ,z)).

Where x and z are variables, X and Z are the respective finite sets from

which the variables will be instantiated, and P is a logical expression.

These new definitions are required because first-order logic would require

additional axioms to specify the finiteness (which was postulated) of the

sets of instantiation variables. These axioms could take the form

(Vx)(xeX => x = a V . . . V x = a ),
1 n

where X = [a ,...,a }, for each set. QA3 is unable to handle the equality
1 n

relation in an efficient manner, and thus couldn't accept these axioms.

In addition, these axioms require that set X (and, for that matter, z)
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be specified a priori. In fact, it will be most useful to be able to

specify a form to be evaluated during the course of a proof, rather than

specifying a particular set in advance.

Clauses using this new quantifier will be input to QA3

in this form

(AFS(X FORMX ... z FORMZ) (P ... x ... z)),

where FORMX and FORMZ are the forms that will yield the finite instantia-

tion sets upon evaluation. The present plan is to replace a set-quantified

formula by an expansion of the formula. For AFS, this expansion will be

a conjunction of the appropriate instances of the original. The expan-

sion for EFS will be a disjunction of instantiations of the original

formula. In the present plan, these expansions will be made when the

formula is initially encountered (probably in PRENEX). Investigations

will be made into the possibility of employing a philosophy of procras-

tination (i.e., never do today that which can be put off to tomorrow)

and only making the expansions when and to the extent that they are

required.

Another feature to be added to QA3 is the ability to be

called recursively. One use for this is to have the theorem prover at

our disposal during evaluation of the set forms. In addition, this change

will increase the overall flexibility of the system (e.g., the user could

stop a proof and enter a new axiom, checking first with QA3 to see if it

is inconsistent or redundant). To facilitate this new feature, bookkeep-

ing arrays such as MEMARRAY and CLAUSEARRAY will be replaced by list

structures that will be bound on entering certain functions. Each list

structure will be a form of graph structure that will allow more flex-

ibility in fetching clauses.
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To allow experimentation with various strategies, the

structure of QA3 will be revised. Several strategies will be available

to the user, but none will be forced on him (currently UNIT PREFERENCE

is an integral part of QA3). Strategies provided will be of three basic

types, CHOICE strategies (e.g., UNIT PREFERENCE), FILTERING strategies

(e.g., LINEAR FORMAT), and EDITING strategies (e.g., Loveland's SUBSUMPTION

test) . Facilities will be provided to allow the user to specify which

strategies or combinations of strategies he desires. In addition, the

user will be able to write his own strategy routines for evaluation by

QA3. The user will have the option of revising these strategies at any

time during the course of a proof. The use of a graph for memory will

allow the user to assign any desired properties to a clause, and then to

use these properties in conjunction with his strategies for directing his

proof.

The revision of QA3 will make use of several extremely

efficient routines that exist in the current system (e.g., UNIFY, RESOLVE,

FACTOR, etc.). The parts that are to be rewritten are those that control

these basic routines. It is expected that these changes will make QA3

even more useful as a research tool than it was previously.

2. The LISP System

The implementation of the LISP programming system, as available

on the PDP-10, was far inferior (from the user's point of view) to the

BBN LISP we had used on our previous (SDS-940) computer. Since LISP will

be used for both QA3 and for the new problem-solving system, certain

improvements were essential. One possibility is to adopt the BBN version

of PDP-10 LISP. However, that system is not yet available, and will

probably not run efficiently unless the BBN monitor and paging hardware
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are also available. Although we are contemplating such a change, it

will be at least a year away. Meanwhile, thanks largely to the efforts

of Rob Kling and Jan Derksen, we have now made available a package con-

taining good function/variable TRACE features, a BREAK capability, a

BBN-type list editor, and' a PRINTSTRUCTURE routine. These will make .

future debugging much easier. (Some of these features are described in

more detail in Appendix D.)

3. Interlanguage Communication

One of the major difficulties in construction of the complete

robot software system on the 940 computer was the fact that sections

coded in LISP and FORTRAN could not communicate with each other except

through a slow and awkward interface (called the "valet"). This was

because LISP and FORTRAN each required elaborate (and incompatible)

"run-time" systems, and the user machine was only 16K-words large. On

the PDP-10 we have again decided to permit the use of both LISP and

.FORTRAN (and assembly language), partly because each of these languages

is. most natural for certain parts of the system, and partly because of

our investment in existing code. However, the PDP-10's large core

memory, long word length, and simplicity of the FORTRAN run-time system

considerably reduce the interfacing problems. A powerful language inter-

face has already been constructed by John Munson; it is described in

Appendix B.

4. Source Language Flexibility

In working with expressions of first-order or higher-order

logic, or .descriptions of abstract operators in a planned problem-solving

space, .one quickly discovers the awkwardness of the standard I/O language

and conventions of LISP. One would like the ability to define (and change)
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the syntax of new user languages at will, and have some system automat^

ically translate these user languages into standard internal data struc-

tures. BIP, a "Basic Interface Package," is such a system. BIP was

designed by Alan Newell at Carnegie-Mellon University. It provides the

builder of large programming systems a capability for easily defining

notational conventions to be used for interacting with a system. Rich

Fikes has implemented BIP in LISP on our PDP-10; he describes its features

in Appendix E.

B. Designing a Problem-Solving System

In our past work the robot problem solver was never really designed

as a system—rather, it was patched together out of components that evolved

from several separate development efforts. Thus, the robot's successes in

the past year were achieved by embedding a "situation calculus" into the

standard QA3 system, inserting a list-structure "symbolic memory" between

QA3 and the geometric grid memory used by the sensors, and building

special-purpose interface functions, using the "valet," to tie everything

together. Now our work has reached a level of complexity and sophistica-

tion that a true design effort seems necessary to build a viable system.

The changeover to a new computer provided us with an ideal opportunity

to start fresh and design a new system--of course, while keeping in mind

past experience and using previously developed programs wherever possible.

This section of this report describes the current status of this

design. No firm decisions have yet been made. In some areas, two or

three alternative approaches are still being pursued in parallel. How-

ever, the overall structure is becoming clear and the pieces are begin-

ning to coalesce. During the next six months we anticipate completing

all design decisions and implementing the basic framework for a problem-

solving system that will be useful to the project for some time to come.
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1. Problem Definition

The organization of a problem solver must depend to some extent

upon-the class of problems to be solved. We have decided that the tasks

to be given to the robot will emphasize navigation in the rooms and cor-

ridors adjacent to the present laboratory environment, and coordination

of visual information with other sensory data, data in memory, and data

provided "on line" manually. The emphasis will be on navigation and

information-gathering tasks, rather than manipulation of objects (e.g.,

by pushing); however, the new system must be capable of at least the

"collect" task accomplished by the previous system. The first new major

' task to test the robot will be, "Go down the hall and stop in front of

every open doorway." The primary consideration in constructing a solu-

tion to this task will be generality in the structure, so that we learn

how to organize the solutions to future, more complex, corridor tasks.

Error correction and responding appropriately to unexpected or uncertain

information are important abilities that have been ignored in the past

but must be provided in the new system.

The principal elements of the new system will be the model,

the operators, a planner, and an executive.

2. The Model

The robot's model of the world will be based upon the n-tuple

storage system embedded in LISP (see "The N-Tuple Storage System,"

Appendix C to Ref. 2). However, simple "tuples" (short for "n-tuples")

of symbols cannot provide enough information in a natural way. Therefore,

the model will have the following kinds of elements:
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(a) Tuples correspond to ground predicates. Examples are:

(IN ROBOT G23)

(TYPE 023 ROOM)

(NAME 023 K2070)

These will be stored directly in the tuple memory.

(b) Special Information Structures

1. Grids

2. Special routines for evaluating predicates.

These will be accessed by pointers stored in tuples.

(c) Predicate Calculus Statements that are valid in all
models (eternal truths). Examples are:

(1) (TYPE 024 DOOR) A (TYPE 025 DOOR) A [(OPEN G24)
A (OPEN 025)]
(At least one of doors G24, G25 is always open.)

(2) (3x)[(TYPE x DOOR) A (OPEN x)]
(There is at least one open door.)

(3) (Vx)(3y)(3z)[(TYPE x ROOM) A (TYPE z ROOM)
A (TYPE y DOOR) A (CONNECTS x y z)]
(Every room has at least one doorway into
another room.)

(d) State-Dependent Nonatomic Formulas (These might, for
example, be sentences derived from categories 1 and 3,
or may be supplied by a sensory system or by the ex-
perimenter. ) Examples are:
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From the "eternal truth":

(IN ROBOT G23) =» (HOME ROBOT)

and the N-tuple:

(IN ROBOT G23)

we can deduce:

(HOME ROBOT)

Note that (HOME ROBOT) is state-dependent and must be
eliminated from the model whenever (IN ROBOT G23) ceases
to be true. We shall provide a special mechanism for

eliminating all state-dependent formulas when their
elimination is appropriate.

(e) Special tuples

There will be some special tuples whose purpose will
be to store relevant information from the past and to

act as flags. Examples are:

(BEENTHERE 024)
(BEENTHERE 025)

Stores the facts that the robot
has visited G24 and G25.

(PICTURETAKINGFLAGSET) stores the fact that the
robot is ready to take a

picture.

3. Operators

L

The operators are routines that can be executed by the Execu-

tive to accomplish some action. Special documentation (available to the

planner) called operator descriptions gives information about

(a) Under what conditions they can be applied

(b) Their expected effects

(c) Their reliability

(d) Their "cost."
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The planning system uses this information in constructing a

plan (which is just a sequence of operators).

Some typical operators might be:

—* —* —»
(1) GOTO (x) Takes robot to point x if x is in the

same room as the robot.

(2) GOTHRUDOOR (x) Takes robot thru doorway x.

(3) GOTOADJRM (x) Takes robot to the adjacent room x.

(4) ISDOOROPEN (x) Finds out whether door x is open.

—»
(5) CLEARPATH (x) Finds out whether there is a clear

path to point x.

In all of these, the operator is really an operator family

identified by a particular name. The value of the parameters or "argu-

ments" of the operator determines the specific action within the family.

Since the action of an operator may change the state of the

world, part of each operator's description must specify what features

of the model that operator affects.

/
The operators -may be viewed as a set of parameterized algorithms

that when executed will cause the robot to perform some specific activity

(e.g., move x inches forward, take a television picture, go to adjacent

room) and/or will make some specified change in the system's model of

the world. The basic system will contain a set of primitive operators

such as move x inches forward, turn x degrees, tilt the camera x degrees,

etc. Operators that accomplish more complex operations (such as go to

adjacent room x) will be written using these primitive operators.

We wish to design the system so that when a new class of prob-

lems is considered, it will be relatively easy to define additional

operators in the system. This facility will allow us to provide the
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system with the basic operations needed to solve problems in any given

problem domain.

Since the system creates plans consisting of sequences of

operators, it is necessary for the planner to have information describ-

ing the operators available in the system. In particular, it needs to

know under what circumstances an operator can be successfully executed

(e.g., a "go through door x" operator can be executed only if door x is

open), what the range of possible arguments to the operator is (e.g.,

a "turn x degrees" operator might restrict x to be an integer in the

range -360 ^ x ̂  360), what the results of executing the operator will

be (e.g., a "go to adjacent room x" operator would change the location

and orientation of the robot such that the robot's new location is in

room x), etc. We have proposed an operator definition language with

which the person who is adding a new operator to the system can easily

provide the information needed by the planner. The system's interpreter

for this language would be able to accept an operator definition in this

language and then use the new operator during planning on an equal basis

with all the other operators defined in the system.
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A Backus Naur Form description of the operation.definition

language is as follows:

(operator definition) ::=

operator (operator name) ((argument),...,(argument));

begin (declaration);...;(declaration);

initial conditions

(condition);...;(condition);

tuple transformations

(transformation);...;(transformation);

resulting conditions
(condition);...;(condition);

end;
(operator name) ::- (identifier)
(argument) ::= (identifier)

(declaration) ::= (type)(identifier),.../(identifier)
(type) ::= (integer) | (symbol) | door | face | room [ object | sign

(transformation) ::= (old tuple) ~* ( new tuple) | (old tuple) ~* ( new tuple)
(old tuple) ::= ($tuple)

<$tuple) :;= "<" <$element),...,<$element> ">".
($element) ::= $ | (symbol expression) | (integer expression)

(new tuple) ::= (?tuple)

<?tuple) ::= "<" (?element) (?element) ")"
(?element) ::= ? | (symbol expression) | (integer expression)
(condition) ::- (boolean expression)

An operator definition begins with the name of the operator

followed by its list of arguments. The Boolean expressions on the ini-

tial conditions section of the definition are interpreted as a conjunc-

tion that must be true before the operator can be executed. The condi-

tions define the domain of arguments and robot world models over which

the operator is defined.
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The set of operators and operand types that we will allow in

the condition expressions has not yet been specified, but our goal is

to have the system accept as rich a class of expressions as possible.

We would like the language to include standard arithmetic operators

over the integers (e.g., plus, minus, times, divide, equality), standard

logical connectives and quantifiers (e.g., conjunction, disjunction,

implies, for all, there exists, negation), and standard set operators

(e.g., union, intersection, compliment). The constraint of the inclu-

sion of these desirable features into the language is our ability to

design a deductive system that can effectively deal with expressions

in the language. Hence, the condition language will continue to expand

as the power of our problem-solving and theorem-proving programs increases.

We have defined the function element and the predicate inmodel

in the condition language to facilitate the fetching of data from the.

robot's world model and the testing for the occurrence of particular

tuples in the model. The predicate inmodel has the following form:

inmodel(($tuple))

The value of inmodel is true if at least one tuple matching the $tuple

argument can be found in the model, and false otherwise. A $tuple is

matched to the tuples in the model by first evaluating each element of

the $tuple and then doing a fetch operation to determine if the evaluated

tuple exists in the model. The atom "$" is interpreted to match with

anything during the fetch so that any tuple found in the model that

matches the non$ elements of the evaluated tuple will satisfy the fetch

and make inmodel true. For example, inmodel((joinsrooms,$,K200,K235))

is true only if there is at least one door defined in the model that

joins rooms K200 and K235.
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The function element has the following form:

element((integer),($tuple))

The value of element is determined by first fetching all tuples from the

robot's world model that match the $tuple argument. The atom "$" is

assumed to match with anything during the fetch as described above. If

the first argument of element is the integer k, then the value of the

th
function is the set formed by the k elements of each of the fetched

tuples. For example, element(2,(inroom,$,K200)) denotes the set of all

objects defined in the model to be in room K200.

• The tuple transformations section of the definition indicates

which tuples in the robot's world model are changed, added, or deleted

by a successful execution of the operator. The transformations are

interpreted to mean that each old tuple is removed from the robot's

model and each new tuple is added to the model by the operator. The

occurrence of "?" in a new tuple indicates a tuple element whose value

cannot be specified in the operator description. For example, a "go to

adjacent room x" operator will change the orientation of the robot, but

the orientation resulting from any particular execution of the operator

cannot easily be described; hence a transformation containing the new

tuple "(theta,robot,?)"could be used to indicate the unpredictable

change.

The tuple transformations also provide additional initial con-

ditions in that for every old tuple that occurs in a transformation,

inmodel of that tuple must be true for the operator to be applicable.

The Boolean expressions in the resulting conditions section

of the definition are interpreted as a conjunction that will be true

after successful execution of the operator. These conditions combined

with the new tuples in the tuple transformation define the range of

robot world model produced by successful execution of the operator.
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The confidence section of the definition contains an integer

expression whose value provides an indication of the probability that

execution of the operator will be successful. For example, the proba-

bility that a "move forward x inches" operator will succeed when the

robot is in a room rl might be an expression involving x, the size of

room rl, the number of objects in room rl, and the amount of unknown

area in room rl. The confidence expression is assumed to have value x

in the range OSx<100, where 0 is assumed to be no chance of succeeding

and 100 is certainty.

• The cost section of the definition contains an integer expres-

sion whose value provides an indication of the expected cost of executing

the operator. The expected cost is a combination of the amount of ex-

pected computer processor time and the expected time required for the

robot to carry out the activity specified by the operator.

The body section of the definition is the actual LISP program

that is executed when the executive invokes the operator.

The declarations that occur at the beginning of the operator

definition provide a list of "local variables" for the definition. These

local variables may be thought of as being existentially quantified over

the entire definition (except for the body) in the following manner:

Given that xl, x2,...,xn,yl,y2,...,ym occur in the declarations, that

which xi occurs in the initial condition or in an old tuple, and that

none of the yi occurs in the initial conditions or in an old $tuple,

then the definition states that if there exist values for xl,x2,...,xn

such that the initial conditions are true and each old tuple occurs in

the robot's world model, then there exist values for yl,y2,...,ym such
i

that for the same values of xl,x2,...,xn a successful execution of the

operator will perform the indicated tuple transformations and produce
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the resulting conditions at the expected cost indicated by the cost

expression with the confidence indicated by the confidence expression.

The following is an example of an operator description for

the system: operator defdoor(direction);

begin integer x,y; face fl,f2,f3; door dl;

initial conditions

direction in {eastface,westface,northface,southfacej;

fl = element(3,(direction,element(3,(inroom,robot,$)),$));

tuple transformations
(grid,f1,x,y,unknown) -» (grid,f1,x,y,known);
(pan,robot,$) -» (pan, robot, ?);

(tilt,robot,$) -« (tilt,robot,?);

-» (doorlocs,dl ,?,?);
-* (type,dl , door);

- (joinsfaces.dl,f2,f3);

final conditions
f2 = fl V f3 = fi;

confidence

cost

body

end;

The function of the operator being described is to take a

picture of one of the wall faces of the room that the robot is in and

define in the model any doors found on that wall from the picture.

The wall face of interest is specified to the operator by the argument

"direction." The declarations indicate that six existentially quanti-

fied variables will occur in the definition—two integer values, three
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wall face names, and one door name. The initial conditions for the

operator require that "direction" be one of four names, and that, fl

will denote the name of the wall face in which doors are to be found.

The first old tuple in the tuple.transformations indicates that there

must exist some point (x,y) on wall face fl that is marked unknown.

This requirement assures that the operator will be applied only to wall

faces that have not been previously completely explored. The tuple

transformations indicate that the pan and tilt angle of the robot's

camera will be changed to unknown positions, that the point (x,y) on

wall face fl become known in the model, and that three tuples associated

with a newly defined door dl will be added to the model. These trans-

formations imply that an execution of this operator is considered success-

ful only if at least one new door is found in the wall face. The result-

ing conditions indicate that one of the wall faces that door dl connects

must be fl.

The confidence expression for this operator is a measure of

the probability that a new door will be found in the picture. It could

be expressed as a function of the amount of unknown area on that portion

of the wall face that is in the range of the robot's camera. The cost

for this operator could be expressed as a function of the cost of an

average pan and tilt of the camera, the cost of taking and processing

a picture, and the cost of entering the new information into the robot's

model.

4. The Planner

The heart of the problem-solving system is the planner—the

program that specifies the sequence of operators to be invoked to accom-

plish each specified task.
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a. Deductive Mechanisms

The planner must have some deductive mechanism to see if

a hypothetical model (resulting from applying an operator) satisfies

the goal conditions. Also it must be able to see if a model satisfies

preconditions for selecting an operator. Possibly QA3, with major addi-

tions enabling efficient handling of sets, equality, integer arithmetic,

etc., should be used here. At first, we will probably restrict the tasks

so that complex deductions need not be made for goal and precondition

testing. (That is, if a model satisfies a goal or precondition, it will

satisfy it in an .unsubtle, obvious manner.)

For some tasks, the original goal predicate (as provided

by the experimenter or by an English-logic translator) can be simplified

considerably resulting in more efficient problem-solving. Consider, for

example, the following task:

"Visit all of the known offices whose doors are open."

For this task, we use the special n-tuple, (BEENTHERE ... )

In predict calculus, the task could be stated as

(VX)[(TYPE x OFFICE) A (DOORSTATUS x OPEN) => (BEENTHERE x)]

If a special deductive mechanism has access to the current model and to

information about the effects of operators, it can substantially simplify

this statement. For example, suppose no operator affects the tuples

TYPE and DOORSTATUS and suppose in the current model there is just one

office whose door is open, namely G23. Then an equivalent, simpler,

task statement is:

(BEENTHERE 023)

The finite set quantifiers AFS and EFS, discussed in Section IV-A-lc,

will provide the ability to make some of these simplifications in QA3.
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b. Planner Organization

The specific structure of the planner has not yet been

decided. One possibility is to construct a GPS-like planner that

attemps to construct a sequence of operators to achieve the goal. ' The

operation of such a planner is roughly described by the following chart:

start

Set M = Current model

Set G = Goal predicate

No

Compute difference

and select an

operator. Add

Preconditions of operator

to G-list and add

the appropriate

hypothesized model
t

to M-list

Set M = to a

member of M-list

and Set G = to a

member of G-list

Yes

Does a

sequence of

operators now

exist that will

accomplish the

tasks? / yes

Success
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An attractive; alternative is to encode the operators into

clauses of predicate calculus and then use QA3 itself as the planner.

QA3 would have to be modified to permit the insertion of special operator-

selection heuristics in appropriate places—but, in the absence of such

special heuristics, the normal theorem-proving heuristics could take

over. Both these approaches are currently being explored and may be

combined.

c. Planner Bookkeeping

Any planner must be able to consider the effects of

hypothetical actions. Therefore it must "grow" a tree of possible

models, and keep track of the relations among them. This results in

surprisingly complicated bookkeeping problems. "Model schema"--

parameterized classes of models—will play an important role in this

bookkeeping, by permitting the automatic selection of particular models

from classes of similar ones. Consider the following example (assuming

a predicate calculus representation for models):

(1) Let M(X) be a model schema. M(X) is a set of clause
schemas containing the variable, x. Note: x is not
one of the variables that is universally quantified
in the clauses; it is merely a variable of the schema.
That is, if xtf-is an instance of x, then M(XCT) is a
particular model that is an instance o-f the schema.

(2) Let C(x) and c'(x) be two clause schemas in M(X)
such that there exists a most general instance xX-
of x permitting C(x^) and c'(xX) to possess a
resolvent R(C,C ). There may be more than one
resolvent, and thus there may be more than one ^.
Note: For the purposes of finding a ^, we can
temporarily regard x as an ordinary (universally
quantified) variable of C and C . Then, if C and
C possess a resolvent using a most general uni-
fier T, that part of T specifying the substitution
for x is a permissible ^.
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(3) For any such X, we can produce an inferred instance
of the model schema M(X). The instance M is
given by

M' = M(xX) U R(C,c')

(4) This operation of obtaining an inferred instance of
a model schema can be explained as follows: M(X)
certainly has an instance M = M(X̂ ). Furthermore
M(X^) has clauses C(xX) and C (x\) possessing the

resolvent R(C,C ). We can consider the resolution
actually to occur in the model instance M . Adding

the resolvent to M then produces the model instance
M . For convenience, however, we can perform the
resolution directly in M (allowing x to be substi-
tuted for) if we are careful to substitute for

x throughout M.

(5) More specifically: Suppose the model M consisting
of the clauses

AT(robot,R)
AT(OBl,a)
~AT(OBl,b) V G .

From these clauses we can produce the model schema
M(X) by using the push (OBl,x) operator. M(X) is

AT(robot,x)
AT(OBI,X)
~AT(OBl,b) V G

Now we can obtain an inferred model instance M by
considering x to be a variable that can be substi-
tuted for in resolution. M is

Mx U G

or

AT(robot,b)

AT(OBl.b)

~AT(OBl,b) V G(

G
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5. The Executive

Finally, it will be the executive's responsibility to handle

a variety of items such as decisions to abandon planning and start

executing, decisions to gather more information, supervising the execu-

tion of operator sequences, and making certain changes to the current

model after operator execution. The executive should also be concerned

with the cost effectiveness" of the performance of the whole system.

(See Appendix E for an extensive discussion of this important issue.)

The executive is the least-understood portion of the problem-

solving system at the present time. We expect to start by implementing

a trivially simple "mark zero" executive, and then gradually evolving

to more sophisticated versions.

a. Mark Zero Executive

This system will work if the current model is a completely

adequate representation of the world and if the execution of operators

is never interrupted by unexpected bumps, etc. It simply executes the

operators proposed by the planner, in sequence, and "gives up" with a

message on the teletype if for any reason it cannot continue.

b. Mark 1 Executive

This system assumes that the planner uses a model thought

to be complete, but that unexpected interrupts may occur during execu-

tion of an operator. Of course, the occurrence of such interrupts may

add new information to the current model, but usually the model is not

changed in the way that it would be if the operator were expected nor-

mally. Therefore the precondition for applying the next operator in the

sequence may not be met. The Mark 1 executive will test for this possi-

bility before applying any operator by checking to see if the preconditions
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of the operator are met by the current model. II they are, it continues

normally. If not, it recalls the planner section. (The planner may re-

member the results of previous searches as well as the remaining unexecuted

operator sequence.)

c. Sensory Verification after Operator Execution

The effects of certain operators are known only approxi-

mately. After execution of such operators we cannot be sure that the

world is precisely as the model represents. Therefore there is an

obvious need to check the world with various sensory equipment to see

if the model adequately describes the world.

We could take the view that these sensory checks are

special "information-gathering" operators that the executive automatically

inserts after certain of the action operators. Examples of possible op-

erators of this type are:

(1) Find the position of the robot with respect to
some object

(2) Find the position of a wall

(3) Find the position of a door in a wall

(4) Determine whether a door is open

(5) Read simple messages

(6) Locate and classify objects in a scene

(?) Conduct a "complete scene analysis"

Alternatively, the sensory checks could be accomplished

implicitly by specialized action operators whose execution accomplishes

certain subtasks highly reliably (most probably by employing sensory

feedback).
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Example: The following sequence of operators takes the

robot from one room into an adjacent room:

GOTO (x)

TURN (a)

GOTHRUDOORWAY

Because of accumulated error, we should have a position and orientation

reading after execution of the TURN (a) and before execution of the

GOTHRUDOORWAY operator. The object of such a reading would be to ensure

that the robot is adequately aligned with the doorway. These checks

could be automatically planned by the problem solver if we require as a

precondition of GOTHRUDOORWAY that a "ready flag" had been set in the

model and provide an operator,READY, that "readies" the robot for going

through the doorway. The effect of READY on the model is to set the

ready flag by inserting a tuple (READY). (Any subsequent motion deletes

this tuple.) Execution of READY involves picture-taking (say) and feedback-

directed motion to align the robot in front of the doorway. We then also

specify that a precondition for applying READY be that the robot's posi-

tion in the model be at the appropriate place. With these added features,

the planner itself can be used to plan for certain sensory readings.

d. Mark 2 Executive

This system will be able to call for the gathering of

new information whenever planning is frustrated by an incomplete model.

If the planner fails to find a list of action operators

for achieving the goal, it is because the goal is unachievable with the

present model. The Mark 2 executive will be designed to analyze the

reason for this failure and match an appropriate information-gathering

operator to this reason. After successful execution of this operator,
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and with a more informed model, the system reenters planner to find a

plan to achieve the original goal.

The Mark 2 executive will also need some "cost-effectiveness"

mechanism (see Appendix F) for monitoring the progress of the planner. Only

when the planner is unable (by the cost-effectiveness criteria) to generate,

an acceptable plan of action operators, are information-gathering operators

considered.
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V LONG-TERM PROBLEM SOLVING

A. Introduction

The long-term problem-solving effort has been involved with the

design and implementation of a general-purpose, formal problem-solving

system. The current system, termed QA4, is based upon mechanized theorem

proving in higher-order logic and emphasizes the role of semantic infor-

mation and flexible control strategies. Two major applications of such

a system are in the field of automatic program writing and in robot

planning and problem solving.

The QA4 system represents a significant extension and modification

to the ideas incorporated in a resolution-based first-order theorem

prover such as QA3.5. First the system is intended to be semantically

rather than syntactically oriented. The methods or procedures used by

the system to solve a particular problem should be related to the seman-

tics of that problem and not applied uniformly to all problems. Secondly,

QA4 is embedded in the formal, framework of m-order predicate calculus.

This provides a much richer language than first order and permits the

syntax and semantics of any portion of the system to be expressed in its

own language. Moreover the addition of sets to the language provides a

powerful interface between logical operations and computational opera-

tions (such as set enumeration etc.). Finally, the QA4 strategies will

be user-defined and expressed directly in the QA4 language rather than

being "frozen into" the problem-solver's code.

The following discussion is a description of QA4 at its present

state of development.

47



B. The Logic Language

The current QA4 language is an extension of higher-order logic as

defined by Robinson.6 Set, bag, and tuple expressions and operations

have been added, and the bound variable occurring in LAMBDA expressions

has been significantly modified.
f

1. The Class.of Expressions

A QA4 expression falls in one of seven syntactic categories:

identifies, numbers, applications, set expressions, tuple expressions,

bag expressions, and bound-variable expressions.

Identifiers. An identifier is an individual symbol such as

X, Y, MAX, etc. The identifiers are the function symbols, predicate

symbols, and variables of the language. Certain identifiers such as

AND, OR, UNION, etc. are called special in that they have predetermined,

built-in meanings. All other identifiers are called nonspecial and may

generally be used for variables, defined functions, etc.

Applications. An application is an expression of the form

F(A) [alternatively (FA) or FA] where F is an expression denoting a

function and A is any expression. All QA4 functions take one argument;

however, the argument can be a tuple (Al,A2,A3...) so there is no loss

of generality.' The meaning of an application F(A)is its natural one--

namely the result of applying the function (denoted by): F to the argument

(denoted by) A. QA4 has an infix language that will be used in the re-

mainder of the discussion. If one writes A => B, the symbol =» is an

infix operator and the expression is translated into the application

IMPLIES (A,B> where (A,B> is the single argument of IMPLIES. Similarly

3 + X + Y is translated into PLUS[3,X,Y] where [3,X,Y] is a bag (discussed

below). Thus the infix expression should be understood as an abbreviation

of a corresponding application.
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J3ets. A set expression is an expression of the form

[E , . . . , E } (the QA4 parser uses [: for [, and :] for }),

where E , ...,E are any expressions. The meaning of the set expression
I n -

{E ..... E } is the set of objects denoted by E , ...,E . Since the order

of the elements E ,...,£ in a set is immaterial — as well as multiple
1 n

occurrences of elements-- the sets

[A,B,C] {C,A,B} and {C,A,A,B,C}

are treated as identical expressions.

Tuples . A tuple expression is an expression of the form

where E , . . . , £ are expressions. Its meaning is the n-tuple (!",.. . ,E )
I n I n

of objects, where E denotes the object E . Two tuples (E . . . . . E ) and
i i ' N 1 n

(F , ...,F ) are logically equal provided they have the same length (n=m)

and each E. is logically equal to F. . So we have (3+1,2-1) = (4,1> ̂  (1,4>.

Tuples are used as arguments to functions generally demanding more than

one argument. Thus a function f(x,y) in mathematics would be represente

in QA4 as a function F(X,Y) where F takes the tuple <X-,Y) as its single

argument.

jags . A bag expression is an expression of the form [E , ...,
1

E 1, where E , ...,E are arbitrary expressions. A bag is like a set
n I n
except that elements may have multiple occurrences. For example,

[2,3,2] = 12,2,3] T/ [2,3]. Bags are used as arguments to functions

such as + (plus) and * (times) that are commutative and associative.

Thus 7 = +[2,2,3].

Numbe rs . A number is simply a positive or negative integer

at present; e.g., 3, 0, -2 are numbers.
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Bound Variable Expressions. A bound variable expression is an

expression of the form (keyword BV E)( where E is any expression, BV is

a bound variable, and keyword is one of the following: LAMBDA, FORALL,

EXISTS, CHOICE, ... So all LAMBDA expressions and quantified expressions

are bound variable expressions. The bound variable, BV, has its own

syntax--and semantics that extend the usual definition. It is more akin

to a variable declaration. Basically, the purpose of a bound variable

is to assign values to one or more variables for a temporary duration--

namely for the evaluation or analysis of the expression E, the body of

a bound variable expression.

A complete bound variable is a triple (name structure predicate)

where name is an identifier, structure is a tuple, bag, or set of BVs (or

a decomposition structure), and predicate is any truth-valued expression.

When the bound variable is bound to an expression, the name is set equal

to the expression, the expression is decomposed if possible according

to the structure, and the predicate is tested on the results of the

decomposition.

For example, (x (Y,z) Y+Z<5) is a bound variable having X as

its name, <Y,z) as its structure, and Y+Z<5 as its predicate. If we

attempt to bind this bound variable to the expression <3,l), we set

X = <3,1> and then bind <Y,Z> to <3,1> by setting Y=3 and Z=l. Then

Y+Z<5 is tested and found true, so the binding succeeds.

More precisely, after assigning the name to the expression, the

structure (if present) is examined. If the structure is a tuple (of

bound variables), then the expression must itself be (or denote) a tuple

of the same length. Then^the elements of this structure are recursively

bound to the corresponding elements of the expression.

If the structure is a set or bag of bound variables, then again

the expression must be a set or bag respectively and the bound variables

of the set (or bag) structure are bound to elements of the expression.
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Here the situation is more complex since there is more than one possible

assignment. The predicate is used to restrict the possible assignments

to the one desired.

For example, to bind (S [X,Y,Z] X<Y & Y<z) to the set {3,1,2}

the only possible assignment is X=l, Y=2, Z=3, S={3,1,2}.

One further structure is the structure decomposition that takes

the form BV1 ' BV2 or BV1 :: BV2. The dot and double colon are termed

"cons" and. "append" decompositions respectively. To illustrate how the

binding takes place in this case we give an example. Bind (T X • Tl)

to <3,2,4). X is set to 3, Tl is set to (2,4), and T to (3,2,4). Thus

X ' Tl decomposes the tuple (3,2,4) into its first element 3 and the

remainder (2,4). (The absence of the predicate means simply that no

predicate test is made.)

An example of the append decomposition is BIND

(X Y :: Z length (Y) = 2) to (3,2,4) assigns X = (3,2,4), Y = <3,2), and Z = (4).

The elements Y and Z must both be tuples, Y of length 2 and Z arbitrary;

Y and Z appended together must yield the bound expression.

LAMBDA Expressions. A LAMBDA expression is a bound variable

expression of the form (LAMBDA BV E). A LAMBDA expression denotes a

function whose value at an argument A is the value of E with the varia-

bles of E set to the result of binding BV to A. The main use of LAMBDA

expressions is in defining new functions. An example is (LAMBDA (X,Y),

where (X,Y) is a function that revises a tuple of length 2. (X,Y) is

the BV, and (Y,x) is the expression body.

Quantified Expressions. A quantified expression is an expres-

sion of the form (quantifier BV E), where E is truth-valued and quantifier

is either the universal quantifier FORALL or the existential EXISTS.

The mathematical statement V V V P(xyz) is expressed in QA4 as (FORALL
x y z

' (X,Y,Z> P(X,Y,Z>). (Similarly for EXISTS.)
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2. Primitive Operations .

The primitive QA4 operations can be broadly separated into

three categories: logical operations, set and tuple operations, and

arithmetic operations. The following list gives most of the basic

operators.

Logical Operators

The operator AND takes a set of truth values and returns

true if the set consists of the singleton [true] and

false otherwise. Thus AND{P , . . . , P } is true provided

all the expressions P , . . . , P denote _true. In the infix

language we could write P & P & . . . & P .
1 x 4 n

OR is analogous to AND except that it returns true if

true is a member of the set and false otherwise. In the

infix language we have P V P V . . . V P .
1 2 n

Since AND and OR are both commutative and associative, they

have been made into a set as an argument rather than a tuple.

EQUAL[EI, . ...Ej

EQUAL asserts that all of the members of the set are

logically equal—and denote the same element. In the

infix language we have E =. E = . . . = E .
1 ^ n

NOT(P)

NOT negates the truth value of its argument. In the

infix language we have #P.
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IMPLIES(P ,P >

IMPLIES asserts that P implies P .
1 2

Infix: P r* P .
1 2

Set, Bag and Tuple Operations

IN(X,S) asserts that X is an element of the set S.

Infix: X IN S.

UNION{S ,S ,...,S } is the set-theoretic union of the sets
i ^ n

slf...,sn.
INTERSECTION{S , .. .,S } is the set-theoretic intersection of

the sets S , S .
1 n

DIFFERENCE<S ,S> is the set-theoretic difference S ~S of
1 2 1 2

the sets S and S .
1 &

APPEND(T . . . . ,T > adjoins the tuples (or bags) T., , . , ., T so
I n i n

if T = <ej , . . . , e l > , . . . , T = <en, . .., en ) then
1

= <ej , . . . , e l > , . . . , T = <e n , . . . , en
i m^ n 1 m

APPEND<T, , . . ., T ) = <eij-, . . ., e1 , e^, . . . , . . . , en > .
1 n 1 m-i 1 m,.

Infix: T :: T ::...:: T .
1 2 n

ADD(X,T) adjoins the element X to the tuple (or bag) T. If

T = (X , . . . , X > then ADD<X,T> = <X,X . . . , X ).
I n I n

NTH(T,n) extracts the n element from a tuple T. If

T = (X ,....X ,...,X > m^n, then NTH(T,n) = X .x 1 ' n ' m' N ' n

Arithmetic Operations

PLUSTn , . . . , n ] forms the sum of the elements n , ,
1 m 1

in the bag argument.

Infix: n + n + ... + n .
1 2 m

TIMES[n ,...,n ] forms the product n • n ... n .
1 m 1 2 m

Infix: n * n * ... * n .
1 2 m
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GT(m,n) asserts that m is greater than n.

Infix: m >• n.

LT\m,n) asserts that m is less than n.

Infix: m <• n.

GTQ(m,n) asserts m is greater than or equal to n.

Infix: m >= n.

LTQ(m,n) asserts m is less than or equal to n.

Infix: m <^ n.

C. Current Implementation

Although the design of the QA4 system is not complete, an initial

implementation has been started to allow feedback and experimentation

with many of the QA4 ideas. The implementation is being done in the

LISP system on the PDP-10 and can be separated into three parts:

(1) Input Output. An expression parser to take the QA4 infix

syntax into a prepolish or internal format has been written.

The parser uses the BIP (Appendix E) package and has the ad-

vantage of being very easily modifiable. Similarly, an output

function to take the internal expression form and output a

corresponding infix version has been written. Finally, a

top-level command language was designed to allow the user to

enter and fetch expressions and properties of expressions

from the data base and to do a variety of other simple tasks.
\
This top-level function essentially interfaces the input

output functions with the expression manipulation package.

(2) Expression Storage and Manipulation

The Discrimination Net. In order to allow arbitrary

semantic properties to be assigned to expressions and to

allow expressions to be retrieved by these properties, a
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discrimination net has been implemented to store all QA4 ex-

pressions. Internally, a QA4 expression is a property list

consisting of a property EXPV, whose value contains the syn-

tactic information about the expression, and whose remaining

properties are semantic. When an expression is stored in the

net, a discrimination on the syntactic properties of the

expression is made to determine whether or not the expression

has already been stored in the net. If so, the old net expres-

sion is returned, and, if not, the new expression is added to

the net. Thus the net contains only one copy of each expres-

sion stored in it. Moreover, a check for expression equiva-

lence up to bound variable names is being added so that two

QA4 expressions that are identical except for the names of

their bound variables go into the same internal net expression.

In order to store sets and bags in the net, an index is

assigned to each element of a set or bag expression the first

time it is stored. If the same set is then stored a second

time (perhaps with some expressions permuted), the elements

are first sorted by the index numbers and then discriminated

upon syntactically. Thus if a user types in the set [A,B,C],

the elements are assigned indices A — 1 , B — 2, C «- 3. If the

set {C,B,A} is entered, it is sorted into [A,B,C] and then

found to already occur. The net functions also maintain sta-

tistics concerning the number of references made to each ex-

pression and discrimination for future optimization.

Contexts. For the purpose of doing proofs by contradic-

tion and conditional proofs (i.e., to prove A =* B assign A true

and prove B), a context scheme was required in which a given

expression in the net has a value relative to a context. Thus,

in the above example, if B is proved true, it is true only in
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the context in which A was assigned true. In order to have

this ability, each expression in,the net has ,a value property

that consists of a context name (LISP atom) and a correspond-

ing value for that name. A context c is an ordered list (a ,

.... a ) of such names. If the value of an expression in con-
in

text c is desired, the list (a ,...,.a.) is examined in order
1 n

until the first a is encountered for which the expression has
i

a value—which is declared to be the value in that context.

Thus to prove A =» B in a context c = (a , . . .,a ) we can create
1 m

a new context name a •; assign A true in a , and prove B in the

1 ° ° 1
context c =(a,a-,...,a). If B is found to be true in c ,

o 1 n

then A =* B is assigned true in context c. The context mecha-

nism is also useful for bound variable expressions: to perform

some operation on the body of the expression in the context

where the identifiers in the bound variable have been assigned

certain values,

Equality Partitions. The efficient treatment of the

equality predicate is crucial to the operation of any problem-

solving system. Rather than axiomatize the equality rules, we

have built them into the QA4 system by introducing equality

partitions. Each expression in a context has (as its value

property for that context name) the set of expressions known

to be logically equal to it in that context. When two expres-

sions are asserted or proved equal in a context, their "equality

sets" are merged to form a new set for each. Moreover, each

expression has (in context) a set of sets of expressions that

are known to be unequal to the given expression. That is, each

set in the "unequal set" contains a set of expressions known to

be not all equal. Again, when a new equality assertion is made,

these sets are correspondingly updated. Consequently, whenever
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an equality assertion causes a contradiction via the equality

rules, it is immediately known. An additional advantage to

maintaining the equality information is to be able to select

the "best" expression equal to a given expression for a cer-

tain purpose.

Primitive Functions. A variety of primitive QA4 set and

bag functions have been implemented. In particular, the func-

tions UNION, DIFFERENCE, INTERSECTION have been written for

finite sets and bags, and these functions are used as the

basis for the equality partition code.

Simplification. A simplification package has been written

to simplify algebraic and logical expressions. The simplifica-

tion function expands products, collects like terms, deletes

zeros and zero factors, and so on.

3. Strategy Control. The strategy control primitives involve

operations such as evaluating a set of expressions and return-

ing when one of the evaluations succeeds, or when all the

evaluations succeed, or when "progress" has been made on any

one of the set. Ideally, one would like the evaluations to

proceed in parallel, be able to communicate results to each

other, and possibly remain in suspended animation for a period

of time until invoked to proceed. To achieve this type of

flow of control, a co-routine package has been implemented

within the LISP system. Unlike the LISP flow of control, which

must return from any started evaluation, the co-routines permit

processes to be started, interrupted for the purpose of invok-

ing any other process, and returned to by a completely differ-

ent route. We plan to use the co-routine facility to monitor

and control QA4 strategies and effort allocations.
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VI HARDWARE AND MAINTENANCE

The bulk.of the hardware effort during this first period has been

associated with converting the robot from the SDS 940 to the PDP-10 sys-

tem. This has been divided into two major parts: rebuilding the TV

A/D converter so as to interface it with the PDP-10 via the DF-10, which

is a high-speed direct port to memory, and converting the robot inter-

face to operate with the PDP-15 satellite computer.

The new 5-bit TV A/D converter has been designed, built, and is

currently being debugged on line with the PDP-10. A digitized picture

consists of 5-bit samples taken on the first of two interlaced fields

with either 120X120 or 240X240 resolution. Each field is divided into

240 rows and 240 columns. In the low-resolution (120X120) mode the con-

verter samples every other line and the odd numbered columns. In the

high-resolution (240X240) mode the converter samples every line at the

odd numbered columns, followed by a second pass sampling every line at

the even numbered columns. External supervision of the converter will

be provided by the PDP-15.

Conversion of the robot interface to operation with the PDP-15 is

well advanced, with the primary obstacle to completion being the delay

of arrival of the PDP-15.

The new fixed control unit (FCU) functions in both an off-line and

an on-line mode. When the robot is on line the PDP-15 has direct con-

trol via the FCU, and the vehicle appears to it as a single peripheral

device. The only signal that is recognized from the manual console is

emergency stop. PDP-15 communication with the vehicle will consist of
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1l) Direct program controlled transfers

(2) Data transfers via the PDP-15 I/O processor

(3) Robot interrupts via the automatic priority system.

As with the SDS 940, the basic unit of information transfer is the 8-bit

character.

In the off-line mode the PDP-15 has access neither to the vehicle

nor to the FCU. The console has exclusive control of the vehicle. This

also means that local operation and checkout of the vehicle is possible

without disturbing the PDP-15.

A PDP-15 simulator has been built to enable checkout of the con-

verted FCU so as to minimize checkout time once the PDP-15 does arrive.

Estimated date of completion for this effort, assuming present delivery

schedules, is 15 June 1970.

60



REFERENCES

1. N. J. Nilsson et al., "Application of Intelligent Automata to Re-
connaissance," Final Report, Contract AF 30(602)-4147, SRI Project
5953, Stanford Research Institute, Menlo Park, California (December
1968).

2. L. S. Coles et al., "Applications of Intelligent Automata to Re-
connaissance," Final Report, Contract F30602-69-C-0056, SRI Project
7494, Stanford Research Institute, Menlo Park, California (November
1969) .

3. R. 0. Duda and P. E. Hart, "Experiments in Scene Analysis," SRI
Al Group Technical Note 20, Stanford Research Institute, Menlo Park,
California (January 1970).

4. C. R. Brice and C. L. Fennema, "Scene Analysis of Pictures Using
Regions," SRI Al Group Technical Note 17, Stanford Research Insti-
tute, Menlo Park, California (November 1969).

5. C. R. Brice, C. L. Fennema, and S. A. Weyl, "AROS, Algorithms for
Partitioning a Picture," SRI Al Group Technical Note 18, Stanford
Research Institute, Menlo Park, California (January 1970).

6. J. A. Robinson, "Mechanizing Higher-Order Logic," in Machine Intel-

ligence 4, Meltzer and Michie, eds. (Edinburgh University Press,

Scotland, 1969).

61



Page Intentionally Left Blank



Appendix A

PDF-15 SIMULATOR
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ABSTRACT

This report describes briefly a PDP-15 simulator and
its assembler, both of which were written on the PDP-10.
The instruction repertoire for the simulator is complete
except for input/output transfer instructions. The assem-
bler provides an optional assembly and symbol table listing
but currently has no pseudo-op or macro capabilities.
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OPERATING PROCEDURE

Transfer the binary file COD15.DAT from the DECtape to the disk
using PIP:

j.R PIPJ
* DSK : /B/X-DTAn : COD1 5 . DATJ

On the DECtape are core images of DDT loaded with three different
assembler/simulator combinations :

SMLTR1.SAV Assembles and loads PDP-15 code. SMLTR1.SAV
optionally outputs binary code to a disk file
called BIN15.DAT and can be used to obtain an
optional assembly listing together with an
optional alphabetized symbol table listing.

SMLTR2.SAV Assembles and loads PDP-15 code. SMLTR2.SAV
optionally outputs binary code to a disk file
called BIN15.DAT but makes no provision for
any kind of listing; however, SMLTR2.SAV does
run in only 24K of memory and should be used
if 78K of memory is not available.

SMLTR.SAV Takes the place of a loading procedure and
uses the binary file BIN15.DAT generated by
either SMLTR1.SAV or SMLTR2.SAV.

If 78K of memory is available, use Procedure 1 described below;
otherwise use Procedure 2, which requires only 24K of memory. In either
case the program assumes that the code to be assembled is located on a
disk file called PGM15.DAT. Procedure 1 or 2 should be used once for
each different PGM15.DAT; Procedure 3 can then be followed as long as
PGM15..DAT is not changed.

1. SMLTR1.SAV (78K)

The following sequence of commands turns control over to DDT:

DTAn SMLTRl.SAVJ
JOB SETUPj

1
_.DDTJ

The following notation is observed in console examples: computer typeouts
are underlined, J denotes a carriage return, $ designates the ALTMODE key,
and TC means control C0
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Insert the appropriate breakpoints (see section called Debugging Tech-
nique) ; then type $G. The assembler will print out the three messages
shown below.

OUTPUT? TYPE Y OR N

If output to the disk file BIN15.DAT is desired, type a Y followed by a
carriage return. A disk file called BIN15.DAT is created and used later
in Procedure 3. If output is not desired, type an N followed by a carriage
return.

LISTING? TYPE Y OR N

If an assembly listing is desired, type a Y followed by a carriage return.
The assembler will output the following type of listing on the line printer:

Sequence No. Memory Location Octal Code PDP-15 Code

10 lOOg 707724 EBA;
20 lOlg 111620 PASS1: JMS TTWRIT;
30 1028 000204 CAL M9MSG;
• o • •
• • • •
• # • •

52690 12534g 000000 SRCBUF: BLOCK 44;
52700 12600g 000000 PTPBUF: BLOCK 1000;
52710 13600g 000000 END;

If an assembly listing is not desired, type an N followed by a carriage
return.

INDEX? TYPE Y OR N

If an alphabetized symbol table is desired, type a Y followed by a carriage
return. The assembler will output a symbol table listing on the line
printer. If a symbol table is not desired, type an N followed.by a car-
riage return.

2. SMLTR2.SAV (24K)

The following sequence of commands turns control. over to DDT:

DTAn SMLTR2.SAVJ
JOB SETUPj
J
D̂DTJ

Insert the appropriate breakpoints (see Debugging Technique) ; then type $G.
The assembler will print out the following message:

OUTPUT? TYPE Y OR N
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I

If output to the disk file BIN15.DAT is desired, type a Y followed by a
carriage return. A disk file called BIN15.DAT is created and used later
in Procedure 3. If output is not desired, type an N followed by a carriage
return.

3. SMLTR.SAV (18K)

The following sequence of commands turns control over to DDT:

DTAn SMLTR.SAVJ
JOB SETUPj

Insert the appropriate breakpoints (see Debugging Technique); then type $G.

DEBUGGING TECHNIQUE

Each time the simulator encounters a HLT instruction in a PDP-15
program, it prints out the following message on the teletype:

DEBUGGING? TYPE Y OR N

If you are trying to debug a PDP-15 program, type a Y followed by a
carriage return. The PDP-15 instruction HLT will jump to memory location
QNOP in the simulator where a breakpoint can be set using DDT. By varying
the location of HLT instructions, DDT can then be used to assist in de-
bugging a PDP-15 program. If you want to use this feature, set a break-
point at memory location QNOP in the simulator, replace the given PDP-15
instruction by a HLT instruction, and replace the contents of memory
location QLOC in the simulator by the given PDP-15 instruction. If,
after a breakpoint halt occurs at memory location QNOP in the simulator,
you want the position of the HLT instruction to stay the same, simply do
an $P. However, if you want to change the position of the HLT instruction,
set a breakpoint at memory location GETNXT+2 in the simulator. Do an $P,
and when a breakpoint halt occurs at memory location GETNXT+2 in the
simulator, replace the HLT instruction with the contents of memory loca-
tion QLOC in the simulator, remove the breakpoint at memory location
GETNXT+2 in the simulator, and proceed as above.

If you are not trying to debug a program, type an N followed by a
carriage return. The PDP-15 instruction HLT will jump to memory location
COMMON in the simulator, where the contents of the three timers are printed
out, thus:

POP15 TIME 5466.40 MICROSECONDSj
IP WAIT TIME 2886 MILLISECONDSj
RUNTIME 0 MIN, 0.50 SECj

J_
EXITJ
tc
r
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PDP15 TIME shows the total execute time required by the PDP-15 program in
microseconds. Since the automatic priority interrupt system is not cur-
rently simulated, input/output is accomplished using program-controlled
transfers. The input instructions KRB.KSF and the output instructions
TSF.TLS are currently programmed to be used together in the following
manner only:

TSF; KSF;
JMP .-1; JMP .-1;
TLS; KRB;

IO WAIT TIME, therefore, shows the total teletype input/output wait time
required by-the PDP-15 program in milliseconds. RUNTIME shows the actual
time required by the simulator to run the PDP-15 program.

SIMULATOR ERROR MESSAGES

If an illegal instruction or an illegal memory reference is encoun-
tered in a PDP-15 program, the simulator types out, respectively, the
following two error messages:

ILLEGAL INSTRUCTION AT LOCATION 13?J

ILLEGAL MEMORY REFERENCE AT LOCATION 13?J

together with the contents of the three timers (see above). Since the
simulated program counter is decremented in either case, the location
given corresponds to the actual PDP-15 instruction which caused the error
message to be printed out on the teletype.

SIMULATOR DESCRIPTION

The size of the simulated machine can be varied from IK to 128K of
memory by adjusting memory location SIZE.

The assembler generates code which the simulator assumes to be in
the following format:

PDP15: data, .garbage «v
PDP15+lg: data,,garbage 1

I ) Reserved addresses
I

PDP15+778: data,.garbageJ
PDP15+100g : data, ,garbage -^
PDP15+101g: data,,garbage 1

I ) PDP-15 program
I

PDP15+ g: data,.garbage J

The PDP-15 program is loaded beginning with memory location PDP15+100g
(i.e. location 100g in the simulated machine).

72



The right half of each data word is then zeroed so that the code
is in the following format:

PDP15: data,,0-
PDP15+lg: data,,0

Reserved addresses

PDP15+778: data,,0.
PDP15+1008: data,,0-
PDP15+1018: data,,0

PDP-15 program
I

PDP15+ g: data,,0.

Unless the normal program sequence is altered, program control is
determined by the following two instructions:

GETNXT: MOVE T,PDP15(PC)
JSR INCPC

The program counter (PC) is originally set to 100g. INCPC is a subroutine
that increments the program counter modulo 4096 (modulo 8192 if bank mode
addressing is in effect).

The simulator decodes PDP-15 instructions by scanning in the order
shown below until one of two things happens: (1) the instruction is dis-
covered to be a legal, currently implemented PDP-15 instruction, in which
case the program jumps to the appropriate subroutine, or (2) the instruc-
tion is discovered to be an illegal or currently unimplemented PDP-15
instruction, in which case the program jumps to an illegal instruction
subroutine.

The program checks the contents of accumulator T for one of six
input/output instructions now implemented: TSF, TLS, KSF, KRB, EBA, or
DBA. If T doesn't contain an input/output instruction, the program jumps
on the operation code (bits 0-3):

ENTRY: ROT T,4
JRST @.+l(T)

to a subroutine corresponding to a memory reference instruction or to one
of three general instruction groups: index operate/input/output instruc-
tions (10), EAE instructions (EAE) , or microcoded instructions (MCRCD).

1. Memory Reference Instructions

All memory reference instructions JSR to the subroutine MODE.
If bank mode addressing is in effect (memory location BNKFLG is set to
all 1's) the program JRST's to the subroutine BNKMOD. If bank mode
addressing is not in effect (memory location BNKFLG is set to 0) the
program jumps on the address mode:
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MODE: 0
HRRI T,0
SKIPE BNKFLG
JRST BNKMOD
ROT T,2
JRST @.+l(T)

to subroutines which handle one of four address mode combinations:
direct (NONE), indexed (BIT5ON), indirect (BIT4ON), or indirect-indexed
(BOTH). Any one of these combinations can be handled by the following
three subroutines: current page address (CPADR), indexing (INDEX), and
indirect addressing (INDRCT). INDEX and INDRCT both JSR to the sub-
routine MEMORY, which JRST's to an illegal memory reference subroutine
if the memory capacity (depending upon memory location SIZE) is exceeded.

2. Index Operate/Input/Output Instructions (IP)

If bank mode addressing is in effect, the program JRST's to an
illegal instruction subroutine, since all indexing operations are elimi-
nated in favor of bank addressing. If bank mode addressing is not in
effect, the program tests for input/output instructions; any input/output
instruction discovered at this point is not currently implemented and
causes a JRST to an illegal instruction subroutine.

The program then jumps on bits 5-8 to the appropriate subroutines:

10: SKIPN BNKFLG
TLZN T,400000
JRST ILLGLI
HRRI T,0
ROT T,5
JRST @.+l(T)

3. EAE .Instructions (EAE)

Figure 7-8 and Table 7-2 in the PDP-9 User Handbook illustrate
EAE instruction microcoding. The EAE instructions are microcoded using
only logical test instructions:

EAE: TLZE T,400000 SHAL: ADDI TIMER,442
JRST SHAL !

XGLQ: TLZE T,200000 jRST'xCLQ

together with a switch which jumps on bits 9-11:

BRNCH: HRRI T,0
ROT T,10
JRST @,+l(T)
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4. Microcoded Instructions (MCRCD)

Figure 7-9 in the PDP-9 User Handbook illustrates the microcoded
instructions; however, the actual scanning sequence appears to be (from
left to right):

0=ORof
l=ANDof

8

SNL SZA SMA
SZL SNA SPA

9 10 11

CLA

5

CLL

6

OAS

15

CML

16

CMA

17

Bit 7=0
Bit7=l

7

RAR RAL
RTR RTL

13 14

HLT

12

which is undocumented but consistent with all available PDP-9/PDP-15 docu-
mentation.

The microcoded instructions are microcoded using only logical
test instructions in a manner analogous to the EAE instructions. The
microcoded instruction OAS (OR Console Accumulator Switches to the
Accumulator) is not currently implemented and generates an illegal
instruction.

USING THE ASSEMBLER

The assembler (until we get MACRO-15 working) effects to find a
disk file called PGM15.DAT. For editing purposes this file should have
sequential line numbers incremented by 10, thus:

10 ABC: LAC .+2;
20 DAC ABC#;
30 HLT;
40 DBF: DATA 777;

The assembler will take one instruction per line. Each instruction
must end with a semicolon. The format is free field—all spaces are
ignoredo There are three fields per instruction: the label field
(optional), the op-code field, and the variable field.

The label field (if present) is identified by a colon following the
label. No more than six characters are permitted; the first character
must be a letter. Only letters and numbers are permitted.

The op-code field contains any legal PDP-15 code (as defined in the
manual) plus the pseudo-ops DATA, BLOCK, and END. The DATA instruction
generates a word of numeric data. The BLOCK instruction reserves a block
of zeroed words. The size of the block is designated in the variable
field. The END instruction must be the last instruction in a program
and must be present.
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The variable field may contain a label, a period, or a number,
optionally followed by a + or - followed by another number. All numbers
are taken to be octal. If a decimal number is wanted, it must be followed
by a $. The period stands for the current setting of the location counter,
which is initialized to lOOg. The variable field may be preceded by an *,
which indicates indirect addressing, and may be followed by a #, which
indicates indexing.
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A LISP-FORTRAN-MACRO INTERFACE FOR THE PDF-10 COMPUTER
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SUMMARY

An interface has been devised for use on the PDP-10 computer that

allows FORTRAN (or FORTRAN-compatible MACRO) subroutines and functions

to be run under the LISP operating system (specifically, the LISP written

at Stanford University, and described in Stanford Artificial Intelligence

Project Note SAILON 28, by Lynn Quam) . A considerable effort has been

made tp endow the interface with generality and ease of use, as much as

could be achieved without tampering with the FORTRAN and LISP operating

systems and compilers. The operating features of the interface are as

follows:

(1) The interface and the various FORTRAN subprograms are loaded

with the regular loader for relocatable programs that is available under

the LISP system.

(2) FORTRAN subprograms may be called at will from within LISP.

To the LISP programmer, these subprograms look exactly like LISP functions.

Up to four arguments may be passed. The arguments and the returned value

may be integers, floating-point numbers, LISP atoms, or other S-expressions.

(3) An optional call-by-name mechanism is incorporated: after the

execution of the FORTRAN subprogram, LISP may access the calling arguments,

which may have been changed by the subprogram.

(4) At any point or points in the FORTRAN subprogram structure, a

function call may be made back into LISP. Again, the arguments may be of

various types. The recursion ends here, however. Neither the interface

nor the FORTRAN system, as presently constituted, can handle a second

recursive entrance into FORTRAN.

The current form of the interface represents two major improvements

over the earlier version, namely, the handling of non-numeric arguments

and the ability to call back into LISP. By thus allowing FORTRAN to "dip

into" LISP conveniently, we reap at least three benefits. The first is

simply a vast improvement in intercommunication, with FORTRAN now able to

access information within LISP data structures. The second is the ability

of FORTRAN to invoke LISP functions for those activities (notably input/

output) that are presently missing because the FORTRAN operating system
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is not in operation. (We may be driven, however, to remedy this situation

more directly in the future.) The third benefit is the use of the improved

interface as a link for two-way communication in which large structures

or quantities of data are explicitly shared by the LISP and FORTRAN sub-

systems, for example in the form of EXARRAY's.

TERMINOLOGY

The term "FORTRAN11 is used herein as a shorthand for any and all

program codes that can be loaded by the PDF-10 relocatable program loader

operating under the LISP system. In general, these will include sub-

programs written in MACRO as well as in FORTRAN. Top-level subprograms

called directly through the interface, and those called from FORTRAN sub-

programs, must be FORTRAN-compatible in their calling sequences. The

same applies to subprograms calling back to LISP through the interface.

Elsewhere within the "FORTRAN" side, FORTRAN compatibility need not be

maintained, as long as consistency is maintained at each point.

Throughout this paper, we use the term "subprogram" to refer

generically to SUBROUTINES and FUNCTIONS in FORTRAN. FUNCTIONS and

SUBROUTINES can be used interchangeably if the returned value, or lack

thereof, is of no consequence. At present (contrary to the manuals)

FORTRAN FUNCTIONS do store back into their calling arguments and thus

allow the call-by-name mechanism. Furthermore, listings indicate that

SUBROUTINES may not save and restore all arguments. Thus, it is perhaps

preferable to write everything as functions.

ARGUMENT TYPES AND CONVERSIONS

Both FORTRAN and LISP recognize two types of numeric quantities,

integers and floating-point (or real) numbers. Since the FORTRAN and

LISP systems represent each of these differently, the interface performs

a conversion on every numeric argument (LISP functions NUMVAL and MAKNUM
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are invoked to do these). Pointers to non-numeric atoms and S-expressions

in LISP are transmitted unchanged to FORTRAN, where they appear as single-

word variables, with the pointer in the right half word and zero in the

left half.

FORTRAN has a limited data type called "literal," used for symbolic

information. Literal constants such as 'ABC123' may be coded into a

FORTRAN program and are stored as consecutive words of 7-bit ASCII

characters, five to a word, left justified, with the last word filled out

with blanks if necessary, and followed by a word of all zeroes. Since

there is no literal variable type, any variable literal must be made up

within a variable or array of some other type. The interface will convert

a FORTRAN literal into the LISP pointer to the atom whose print name

matches the literal. (The interface scans the literal, character by

character, until it encounters either an ASCII blank or zero. The

maximum length allowed is 25 characters.) How the interface is aware

of a literal is described below.

Table I summarizes the conversions that are applied by the interface

to every argument (when LISP calls FORTRAN or vice versa) and to every

result value when the corresponding returns are made. Also, when a call-

by-name argument reference is made by LISP, the argument is converted

from a FORTRAN data type back to a LISP data type.
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TABLE I

CONVLF and CONVFL Conversions

FORTRAN Quantity

LISP Quantity

Integer (INUM or FIXNUMX-

Real (FLONUM)̂

Type

*
-̂ •Integer

*
Real

Pointer to a
non-numeric S-Expr.
(machine address)

Pointer to Atom
(machine address)

Logical
Octal

Literal
Dbl. Free.*
Complex*

Code

0

2

3
4

5
6
7

Indicates LISP-to-FORTRAN conversion (CONVLF)

Indicates FORTRAN-to-LISP conversion (CONVFL)

Indicates existence as FORTRAN variable type

The LISP-to-FORTRAN conversion routine in the interface, CONVLF,

determines the nature of each LISP quantity by examining it (with NUMBERP).

If numeric, the quantity is converted with NUMVAL; if not, it is passed

unchanged. The FORTRAN type-code is also generated and stored (even

though called FORTRAN routines seem to ignore the codes), so that in the

case of a call-by-name argument the reverse conversion can be performed

properly later. The "octal" code is generated for all non-numeric pointers,

because intuitively it seems most appropriate.

The reverse, or FORTRAN-to-LISP conversion routine (CONVFL), determines

the type of the FORTRAN quantity by examining the type code as shown in

Table I. These type codes are taken from the standard FORTRAN subprogram

calling sequence (see the PDP-10 FORTRAN IV manual, Appendix 4) . If a

FORTRAN routine is to call LISP with an "octal" or "literal" variable

quantity, that quantity must be stored in (or EQUIVALENCE'd to) a logical

variable (for an octal quantity) or a complex or double-precision variable
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(for a literal quantity) so that the latter may be used in the calling

sequence to establish the type for the conversion. This dodge requires

a slight amount of care, but it should not impose any real hardship. On

the other hand, an octal or literal constant may be coded into the calling

sequence without further ado.

CALLING FORTRAN FROM LISP

A call to a FORTRAN subprogram appears in LISP exactly as would a

call to a LISP function of the same name; thus, the FORTRAN function

FUNCTION ITEST (I,J,X,Y)
LOGICAL Y
etc.

might be called from LISP as

(ITEST 3 JJ 4.0 NIL) .

To prepare LISP for this, we define a dummy function ITEST in LISP

as follows:

(DE ITEST (I J X Y) (IFORT4(FORTREF(QUOTE ITEST))! J X Y)) .

This causes ITEST as just defined to occur as a real LISP function, so it

can be called in LISP. When it is called, FORTREF takes the name "iTEST"

to the loader symbol table, and returns with the address of the FORTRAN

function ITEST (which is then stored on the property list of ITEST under

"FORTFUNC"). IFORT4 is an entry into the interface itself. The interface

takes the function address (which it receives as its first actual argument,

in accumulator 1) and prepares a FORTRAN calling sequence to that address.

The interface then performs the CONVLF conversion on the remaining

arguments, stores them in the calling sequence, and enters the FORTRAN

subprogram.
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When the FORTRAN subprogram does a RETURN, control comes back to the

interface. The value of the function (or garbage in the case of a sub-

routine) is converted back by CONVFL, and control returns to LISP.

For each FORTRAN subprogram to be thus called from LISP the only

necessary preliminary is a dummy function definition similar to that

above. The identifier IFORT4 is varied in two ways, as appropriate to

the subprogram called. The terminal digit tells the number of arguments

(limited to 4 by a constraint of LISP), and the initial letter is I for

an integer result to be returned, null for a floating-point (real)

result, and P for a pointer result. Thus, the interface provides the

following entries:

Number of Arguments Integer Result Real Result Pointer Result

None

1

2

3

4

(Pardon our previous laxness about slashed O's.)

Upon return to LISP, accumulators 0 and 6-17 are restored to the values

they had when LISP called the interface. Accumulator 1 holds the result.

As in most FORTRAN programming, it is the programmer's responsibility

to ensure that the types of 'the arguments and the result are agreed upon

between the called program and the calling program, given the transforma-

tion performed by the interface.

THE CALL-BY-NAME MECHANISM

A distinction is made in FORTRAN between call-by-name and call-by-

value. In a call by name, the called subprogram is given access to the
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location of the argument in question where it resides within the calling

program; hence, if the called program changes the value of the argument,

it changes its value within the calling program as well. In a call by

value, on the other hand, the called subprogram is given access only to

a copy of the value of the argument and cannot change its value within

the calling program. PDP-10 FORTRAN SUBROUTINES and (contrary to the

manual) FUNCTIONS operate on a call-by-name basis at present.

An analogous distinction may be made in LISP. LISP usually operates

on a call-by-value basis, in that if a function (FOO ATOM) is executed,

FOO receives the value of ATOM and cannot change the fact that ATOM is

bound to that value. Only if (FOO (QUOTE ATOM)) is executed is FOO able

to get at ATOM and change its binding.

The interface allows the LISP programmer the option of accessing

the arguments of a called FORTRAN subprogram after the subprogram has

been executed, thus creating the effect of a call by name. To do this,

one of the following functions is executed in LISP:

(ARG1) (ARG2) (ARG3) (ARG4) ,

corresponding to the first through fourth arguments of the earlier

calling sequence. Each function returns the current value of the

argument, as it was left by the most recently called FORTRAN subprogram.

(The interface properly converts the returned argument back to the LISP

type that it had when the subprogram call was made.)

For example, if the called FORTRAN subprogram

FUNCTION ITEST (I,J,X,Y)

executed the statement

J = J + 1 ,

as if it were called from LISP as

(ITEST 3 JJ 4.0 NIL)
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where JJ had been SETQ'ed to 5, this would be a call by value, and

the value of JJ in LISP would be unchanged. But the form

. . . (ITEST 3 JJ 4.0 NIL)(SETQ JJ (ARG2)) . . .

would change the value of JJ in LISP to 6.

The call-by-name mechanism affords a convenient means for passing

back to LISP information in addition to the function value, without

bothering to create EXARRAY's or other mechanisms.

CALLING LISP FROM FORTRAN

At any point within the FORTRAN subprogram structure, a function

call may be made back into LISP by invoking the following "FORTRAN

function":

LISP(lisp-fn, argl,arg2, . . . ,argn)

This behaves as a regular function in FORTRAN, i.e., it can be coded

into an arithmetic assignment statement and it returns a value.

The argument "lisp-fn" must convert, under CONVFL conversion,

either to a pointer to the atom LISPFN or to a pointer to the executable

compiled code for LISPFN, where LISPFN is the name of the function to be

evaluated in LISP. Therefore, "lisp-fn" in FORTRAN must be either the

pointer itself (in which case it must be given a logical or octal type)

or the FORTRAN literal 'LISPFN' (in which case it must be given a literal,

double precision, or complex type). In normal usage, of course, where

it is merely desired to call a specific LISP function from a specific

point in the FORTRAN structure, it suffices to code the literal constant

(of up to 25 characters) directly into the calling sequence:

L'ISP('LISPFN',argl,. . .).

The number of arguments for the lisp function, n, may range from

zero through five. (The interface automatically determines the length
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of the calling sequence, so only the single entry point "LISP" is needed.)

The interface performs CONVFL conversion on the arguments, with their

types as specified in the FORTRAN calling sequence. On return from LISP,

the interface examines the result to determine its LISP type and performs

CONVLF conversion on it.

The values of all of FORTRAN'S accumulators are saved by the inter-

face and restored to FORTRAN before returning. Whenever LISP is entered

(either by a call or a return from FORTRAN), the values of LISP's

accumulators are restored to those that were saved at the last exit from

LISP. Thus, both LISP and FORTRAN see the necessary continuity of

storage in their accumulators.

MISCELLANY

The interface, the FORTRAN functions, and DDT if desired, are loaded

under LISP function (LOAD) by naming the files in which they reside. When

the loader is terminated with the escape key, any called-for FORTRAN

library functions are loaded. The status of the FORTRAN operating-system

routines is unclear; in any case, they are not operative in the current

arrangement because their UUO's conflict with those of LISP.

Other preliminaries amount to making all the xFORTn and ARGn entries

of the interface available in LISP (through GETSYM), making certain LISP

functions available to the interface (through PUTSYM), and establishing

the dummy LISP functions and FORTREF.

The programmer must be aware that when control passes to LISP, list

structures are subject to garbage collection under the rules of LISP.

Thus, any pointers into LISP that are stored in FORTRAN across a time

when LISP is entered must refer to structures that are protected from

garbage collection.

The interface uses the LISP UUO "CALL" (see SAILON 28, Appendix 3)

to enter a called LISP function. CALL accepts a pointer to an atom that

has a SUBR or EXPR function definition; otherwise, it assumes the pointer

is to compiled code. This means that other functional forms, such as

89



MACRO'S, cannot be called directly this way. To get at these, one must

shield the MACRO with a dummy function definition, or go through EVAL,

or fetch pointers to the appropriate codes and use them directly, or

perform some other trick. The result of calling a MACRO directly, or

calling a named function that is not established in LISP, is generally

to enter the atom header in LISP or in the interface and cause a crash.

Listings of the interface and other routines involved are available

from the author.
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SOME REMARKS ON RESOLUTION STRATEGIES

The following comments are exerpted from a letter I wrote discussing
some problem-dependent aspects of resolution-logic theorem proving. The
underlying focus of these remarks is the nature of the information that a
user needs to specify for a problem-oriented strategy to be employed by a
multi-strategy system. However, I was more concerned with summarizing some
of my experiences and with articulating certain questions than with reach-
ing particular conclusions about the necessary ingredients for such a language,
let alone deriving a preliminary language design. Nevertheless, some of these
comments seem to have been interesting to other readers and may benefit from
a wider circulation.

I'd like to classify the various strategies I know, some of which we
currently use on QA 3.5 under three headings, and then describe a few addi-
tional details of strategic nature which aren't subsumed in this classification.

Attention (Ordering) Strategies:

(Which clause pair shall we consider next?)

(1) Unit Preference (WOS) - QA3 - A classical strategy.

(2) Preference Set (Kling) - QA3 - Partition memory, allowing some
axioms likely to be used in a given proof or "preferred status."
Draw in other axioms only if the preferred axioms don't lead to
proof (by a preset level, number of search nodes, or other cri-
terion) . This is independent of unit preference.

(3) Splitting (Slagle) - Similar to backwards chaining. It entails
developing an AND/OR subgoal tree in which goals are satisfied
by resolution deductions through the tree to D . (Might be com-
patible with modified unit preference at each level of tree
search, but it's really motivated by radically different considera-
tions .)

Selection Strategies:

(Given a set of clauses, shall they be resolved?)

(1) T-Support (Wos) - QA3 - Classical.

(2) Hillclimbing (Green) - QA3 - Need a metric for the space.
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(3) Predicate Filter (Kling) - QA3 - Accept a clause iff all its
predicates are on a 'filter list. (A crude way to trim the
data base by subject area and relations likely to enter into
a given proof—very useful with analogies.)

(4) Indicator Test (Kling) - QA3 - A helpful strategy for neglecting
irrelevant but pregnant clauses in second-order domains like
algebra. Some predicates—e.g., group[g;*] or map[f ;x;y]—have
"indicators"—e.g. the group operator *, the map function f, etc.
Some clauses contain these 'second-order predicates ' and fully
first-order predicates—e.g.

subgroup[h;g;*] V subset[h;g]

These clauses will not be resolved on the set predicates (in,
subset, factorset, intersection, etc.) until all the indicators
in the clause are fully instantiated.

(5) Ancestry Filter (Luckham) - QA3 - See his paper from Stanford
AI Proj ect.

(6) Merging (Andrews) - QA3 - See his paper in JACM.

(7) Length Plus Level Bound - QA3 - Set in advance.

(8) Term Depth - QA3 - Set in advance.

Deletion Strategies:

(Given a resolvent, should it be added to the active search tree?)

(1) Doublerestest (Kling) - Do not accept a resolvent unless it
resolves with at least one node in the developed search space.
(Actually more elaborate, but an incomplete strategy. Resolvents
that fail this criterion must be saved and tried again, or used
themselves if no double resolvents exist.)

(2) Subsumption (Robinson) - QA3 .

(3) Forbidden States (Kling) - QA3 - Some values of state variables
are "forbidden" on semantic grounds, and clauses containing
states with these values are edited out.

(4) Answer-Units Only (Green) - QA3 - Keep clauses which only have
an answer-clause which is a unit.

Other:

(1) Predicate Evaluation (Green) - QA3 - Associate a LISP form with
a predicate so that the literal may be evaluated to T, NIL, or
even return a different literal.
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(2) Function Evaluation (Green) - QA3 - Associate certain functions
with LISP forms, for evaluation.

I want to provide a simple example about the strategic .use of axioms
and how we simplify some of our searches by clever tricks. Since the example
I develop uses predicate and function evaluations, I'll develop an example
of predicate evaluation first.

Predicate evaluation has turned out to be an effective way to embed
semantic information in a comparatively efficient way. Cordell's paper
Application of Theorem-Proving Techniques to Problem Solving" describes
our state-transformation approach to problem solving. Consider a simple
robot situation in which we want the robot to reach a box which is situated
on a platform. To reach the platform top, the robot must roll up a wedge.
(This is a loose analogue of the monkey-bananas problem.) A simple axio-
matization may include the following axioms:

Al. Y(r w p A s) on[r;A;s] A on[w;£;s] A on[p;4;s]

A at[w;p;s] A at[r;p;s]

-• on[r;p;rollup[r;w;s]]

A2. onCrobot;floor;initial-state]

A3. on[platform ;floor;initial-state]

A4. on[wedge ;floor;initial-state]

A5. on[box jplatform ;initial-state]

Axiom Al states that if the robot, wedge, and platform are all on
level H and together in state s, then the robot can get onto the platform
by rolling up the wedge. Now other action axioms are needed to develop
a state s, such that at[robotjplatform^;s] and at[wedge^splatform^] are
true. But A3 or A4 could clash with a partially instantiated derivative
of Al to yield

on[robot;wedge ;rollup[r;w;s]]

or
on[robot;p;rollup[r;platform ;s]] ,

etc.

One way of eliminating semantically senseless clauses like these is to
use predicate evaluation for embedding types. For example:

Al'. V(r w p ̂  s) on[r;£;s] A on[w;£;s] A on[p;Jl;s]

A at[w;p;s] A at[r;p;s] A wedge[w] A platform[p]

-» on[r;p;rollup[r;w;s]]
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If wedgeCx] and platform[x] are associated with evaluable LISP forms that
are T or NIL for appropriate (ground) arguments, then semantically senseless
clauses will evaluate to T and be deleted. Semantically sensible clauses
will be acceptable and the additional type literals will "disappear" after
evaluation (to NIL) .

Function evaluation is also helpful in embedding some semantics into
our axiomatizations . We have a function p[x] which will unify (thus
resolve) or subsume with any permutation of the argument list x. Thus
in geometry, we will say triangle[p(A B C) ] instead of triangle [A ;B;C] and

V (x y z) triangle [x ;y ;z] -» triangle [z ;x;y] A triangle[y ;z ;x]

Consider the following theorem: The intersection of two Abelian groups
is Abelian — i.e.

int[C;A;B] A abelianCA;*-^. A abelian[B 5*^ -» abelian[C ;*^

In proving this theorem, if one knows that the intersection of two groups
is a group, one should easily derive groupCC ;*-^] . So in the course of
proving this theorem the following clauses may appear in the search space :

Al . ~group[z;*] V ~int[z ;x;y] V~group[x;*] V ~group [y ; * ]

Cl. group [A ;* ]

C2. group [B;*]
£

Four resolvents may be derived :

HI. group [z;*] V~int[z;A;A]

R2. group [z;*] V~int[z;B;B]

R3. groupCz;* ] V~int[z;A;B]

R4 . group [z;*] V ~int[z ;B ;A]

We really want either R3 or R4, and Rl and R2 are genuinely spurious.
If we associate an evaluable form intf[x;y;z] with intersection[x;y ;z] ,
then we can easily throw away a clause that contains a term of the form
int[z;x;x]. By using the function p[x], described above, in a new axio-
matization, R3 and R4 may be compressed into a single clause z which would
be like

R5. group[z;*1] V ~int[z;p[(A B)

This joint use of evaluation procedures is merely a clever tactical device.
The unsolved problems that we face here include various ways of specifying
the use of a particular axiom or lemma. Often a unit lemma is used once,
to resolve with a particular axiom, and is then forgotten. Often an axiom,
such as the preceding relationship between a pair of groups and their inter-
section, is quickly resolved to some simple form—e.g. R5. Or R5 is resolved
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with the premise int[C;p[(A B)]] and is forgotten. Rarely are intermediate
results like R5, or even groupCz;*-^] V ~in£[z ;p[(A B) ] ] V ~group[y j*̂ ] used
on more than one line of reasoning. But we aren't sure how to specify the
use of an axiom (or sequence of axioms) to focus on their key results (maxi-
mal resolvents) in a way we can specify as a problem-dependent user-supplied
strategy.

Another problem-dependent strategy arises in our "three box" problem.
Initially we have three boxes dispersed over a room, and the position of
each box is noted—e.g., positionCAjp-^ ;initial-state] (Box A is initially
at p̂ ). We then ask QA3 to find a sequence of actions that will bring the
boxes together. The problem statement is

3(s p) position[A;p;s ] A positionCB;p;s ] A position[C;p;s ]

A wise problem solver would fix the initial positions of A, B, or C as the
target position arid move the other boxes. QA3, working with breadth-first
search, sets up each of A, B, and C as a target position and problem solves
in parallel. What kind of executive do we need to automatically restate
the problem as

3(s ) position[A;p;s] A position[B;p ;s ] A position[C;p ;sf]

or to shift the style of search on the initial problem?
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LISP TRACE PACKAGE FOR POP-10
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by

Robert E. Kling
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SRI Project 8259
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I've written a new LISP TRACE package which supercedes the current

TRACE package. A fully descriptive memo will be available in a week or

so; this is a brief introduction to facilitate earlier use.

* * * * * * *

1. All the functions described below are upwards compatible with any

that are used in the system-associated TRACE package.

2. To access the package, type N when the LISP system asks whether

you want TRACE?. Then type (INC SYSi^BRKTRF) from within LISP.

The new package uses about 3700 free words, compared to 1800 used

by the original package. So allow 2K more free storage (or expect

2K less free space available).

3a. All the printing done by the system is effected by a global varia-

ble, PRINTLEVEL, which is initially set to 10.

3b. When the TRACE package encounters an error or if a function is

broken, the system calls help[m] which prints a message m and then

enters a READ-EVAL-PRINTN loop.. printnCs] , the print function, is

responsive to PRINTLEVEL.

4a. To trace fn ...fn , execute (TRACE FN1 FN2 ... FNK) as usual. All

the arguments will be printed. Consider a function fn [x;y;z].
£i

Suppose you only want to see the values of x and cdr(y); and you

want only to see the length of the value of fn [x;y;z]. Then
^

execute

(TRACE (FN2 X (CDR Y) ; ,_,: (LENGTH FN2)))

4b. If a function FN3 to be traced is compiled, the TRACE routine will

respond with

(FN3 IS A COMPILED FUNCTIONujARGS = ?)
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Enter a list of function arguments. Thus, to trace subst[x;y;z],

type (X Y Z) when asked for an argument list.

4c. To untrace f n .. .f IL execute (UNTRACE FN1 FN2 ... FNK). When a
J_ K.

function is traced its name is added to the global variable ALLTR.

(UNTRACE ALLTR) will untrace everything.

4d. The functions which are called by the TRACE package in tracing a

function may hot themselves be traced. These functions include:

MAPC, MAPCAR, LENGTH, SUB1, ADD1, PLUS, *DIF, SUBST, CAR, CDR,

GET, GETL, and CADADR.

4e. The tracing functions are heavily error protected with errsetCs],

When an error occurs during tracing the message (HELP CONTROL) is

printed and you have access to EVAL with variable bindings as

saved local to the error location. In order to uplevel to the

bindings as they are stored at the time the last traced function

was entered, type (ERR). Successive evaluations of (ERR) will

unwind you step-by-step through each level of traced-function

calls. A control G will bring you to the top-level eval. After

exiting from an error-interrupted trace, execute (RESET) to

reinitialize variable bindings and restore certain global tracing

parameters. Warning I Do not evaluate (RESET) within the TRACE

package, but hit control G and exit to the top level first.

5a. To trace fn only when it is called by fn ...fr̂  , execute

(TRACEIN FN FN1 ... FNK)

For example, to trace memq[x;Ji] only when it is called by testfnl[ ]

and testfn2[ ] execute

(TRACEIN MEMQ TESTFN1 TESTFN2)
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If you want to see only x and length (A), execute

(TRACEIN(MEMQ X (LENGTH L); :) TESTFN1 TESTFN2)

5b. To deactivate the tracein feature, for MEMQ, execute

(UNTRACEIN MEMQ)

To still trace memq[x,4] within testfnsC ], execute

(UNTRACEIN (MEMQ TESTFN1))

6a. If you only want to see a function's trace print when some predi-

cate p is satisfied, then execute trshowCfn; p] for each function-

predicate pair. For memqCxjA] above,

(TRSHOW MEMQ(LESSP( LENGTH L) 10))

will only show a trace of MEMQ if length [A] < 10.

6b. trunshowCfnn ;fn ;fn ...] reverses the effects to trshow [fn; p]J. 2t o

for f n , f n , f n ...
j. ^ *3

7a. I've written a simple break feature that stops the system when a

specified function is entered and calls the HELP program. Execut-

ing break[fn; p] will halt fn upon entering if p is true. A

message (FN BROKEN) is printed and the user has access to EVAL

with the PRINTN feature. A broken function is halted just after

its arguments are bound to the LAMBDA variables and are evaluated,

To exit from a break, type OK.

7b. Unbreakffn ;fn ;...] will unbreak the listed functions.
J. ^

8a. tracetW] has been modified in several ways :

(1) The output format for SET-SETQ tracing is of the form:

x <- 3.
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(2) GET, GETL, REMPROP, and PUTPROP are traced along with SET

and SETQ. GetCnam; prop] prints out as: PROP(NAM) = VALUE.

If either prop or nam are on the list ALLSET the preceding

printout will occur.

(3) The tracing may be turned off without having to reinsert a

list of atoms to be traced.

8b. (TRACET) will start the SET-SETQ-GET... tracing.

(TRACET Al A2 A3 ...) will trace each of Al, A2, A3...

(TRACET T) will turn the tracing on if it has been turned off.

(UNTRACET) destroys the tracing list ALLSET and turns off the

tracing system.

(UNTRACET Al A2 ...) untraces Al, A2 ...

(UNTRACET T) suspends tracing printouts but does not destroy the

reference list.

9. I've modified edit to work with traced functions.

10. All these features are mutually compatible. No doubt hidden bugs

are still lurking within the code. I'd appreciate a printout

associated with any errors. Or, more effectively, SAVE your system

at the time a peculiar error occurs and I'll be able to debug it

quickly.

11. I'd appreciate any comments or suggestions regarding the ease or

.difficulty of using this system.
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INTRODUCTION

This document describes a LISP implementation of BIP (Basic Inter-

face Package) on the PDF-10 computer. BIP is a set of programs designed

by Allen Newell at Carnegie-Mellon University which provides the builder

of large programming systems a capability for easily defining notational

*
conventions to be used for interacting with a system. The central

routine in BIP is a translator which provides a symbol table and

precedence-parsing facility. The entire package provides the follow-

ing capabilities:

(1) Segmentation of an input stream of characters into words

(2) Association of a word to a particular internal symbol

(3) Recognition that some program (action) should be executed

upon encountering a particular word in the input

(4) Retention of several symbols and their order of appearance

as a context for an action

(5) Declaration of new words and the symbols associated with them;

also, declaration of the associated actions, if any

(6) Delay of actions from the time at which their words appear

in the input stream until some later time

(7) Association of an internal symbol to an external word

(8) Variation of the symbols and actions associated with a word

t
as a function of context.

*
I am indebted to Allen Newell and Peter Freeman for introducing and
familiarizing me with BIP. Also, I wish to thank Robert Yates for
assisting me with the LISP implementation.

4.

This list of capabilities is taken from a working paper entitled BIP:
Basic Interface Package" by Allen Newell and Peter Freeman.
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BIP was designed to be a skeleton which can be fleshed out in

whatever way is useful for the user. The skeleton itself is completely

accessible and is meant to be changed to meet the needs of the indi-

vidual user.

OVERVIEW

In normal usage the BIP translator will remain in top-level control

of the user's system throughout a run. The translator uses an EPAM-

type discrimination tree to associate actions and internal symbols with

strings of characters from the input stream. These associations are

made relative to a syntactic and semantic context. The use of contexts

provides an extra dimension of flexibility since the user can easily

create new contexts, and change contexts during input to allow the

interpretation of any given character string to vary depending upon

the environment in which it occurs.

The following definitions will help establish a terminology for our

further descriptions :

Character—any character which can be input from a teletype.

Word—a string of characters.

Symbol—the internal data structure associated with a particular

word. In the SRI BIP the translator calls the function

BIP:CRSYM to create a symbol for a new word. At the time of

the call, CHARSK is a list (in reverse order) of the charac-

ters which make up the word. The symbol created by the

BIP:CRSYM function provided with the package is the atom

whose name is the same as REVERSE of CHARSK.
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Context—a data structure consisting of any or all of the follow-

ing : a recognition tree, context mark, action list, and

boundary character list. In the SRI BIP a context is a list

whose first element is the identifier CONTEXT; the recognition

tree is an element of the list whose CAR is the identifier

TREE; the context mark is the CDR of an element whose CAR is

the identifier CM; the action list is an element whose CAR is

the identifier ACTIONS; and the boundary character list is an

element whose CAR is the identifier BC.

Boundary character—any character used by BIP in determining the

boundaries of a word.

Boundary list—part of a BIP context; it is a list of all boundary

characters for a particular context.

Action—a BIP data structure which is associated with a symbol and

consists of a priority number, an immediate action, and

a delayed action. In the SRI BIP an action is a list whose

first element is an integer (i.e. the priority number),

optional second element is the immediate action, and optional

third element is the delayed action. The immediate and de-

layed actions may be arbitrary evaluable LISP s-expressions.

Action list—part of a BIP context; it is a set of property-value

pairs in which the properties are symbols and the values are

the actions associated with them. In the SRI BIP an action

list is a list whose first element is the identifier ACTIONS

and each succeeding element is a list whose CAR is the symbol

and whose CDR is the action associated with the symbol.
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Context mark—part of a BIP context; it is used to link BIP symbols

with nodes of the recognition tree.

Recognition tree—part of a BIP context; it is a discrimination

tree used by the translator for the storage of symbol-

definition information. In the SRI BIP each node of a recog-

nition tree is a list whose first element is a one-character

identifier (except for the top node which has the identifier

TREE as its first element) and whose succeeding elements

include the nodes which branch from the node and elements

whose CAR is the context mark of some context and whose CDR

is a BIP symbol.

Data stack—a push-down stack on which a symbol without an action

is pushed after its associated word is recognized in the

input stream by the translator. In the SRI BIP the data

stack is the list DATASK; CAR of DATASK is considered the top

element in the stack, CADR of DATASK is the second element,

etc.

Operator stack—a push-down stack on which actions containing de-

layed actions are pushed to await execution of the delayed

actions. In the SRI BIP the operator stack is the list

OPERSK; CAR of OPERSK is considered the top element in the

stack, CADR of OPERSK is the second element, etc.

Context stack—-a stack containing pointers to contexts whose top

element is the current context. When the translator enters

a context it does so by pushing the context being entered

onto the context stack. When the translator returns to a
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previous context it does so by popping the context stack

until the desired context is the top element. In the SRI

BIP the context stack is the list CONTEXTSK; CAR of CONTEXTSK

is considered the top element in the stack, CADR of CONTEXTSK

is the second element, etc.

THE TRANSLATOR

The translator's flow of control is shown in Figure 1. The input

to BIP is a string of characters from some source such as a teletype,

external file, or an internal generator. The translator always calls

BIP:GETCHAR to get the next character so that it is independent of the

source of these characters and the source can be simply switched. The

translator leaves to the user the responsibility of selecting the input

source.

The recognition philosophy of BIP is to always recognize the long-

est possible word. Thus, starting at the top of the tree just after a

word has been recognized, BIP will- work its way down the branches of the

tree as long as possible without checking if the character it has just

received is a boundary character or not. When it falls out of the tree,

that is, cannot find a branch from the current node labeled with the

character that it has just received, it checks to see if the current

node contains a context mark identical to that of the current context.

If not, or if the current character is not a boundary character, it

assumes a new word is being defined and proceeds to extend the tree so

that it can now recognize; it. If there is a context mark and the cur-

rent character is a boundary character or the previous character was
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one, then it knows it has recognized a word and obtains its symbol.

If the symbol has an associated syntax action in the current context,

it is performed as described below. If it does not have an action,

the symbol is pushed onto the data stack. In either case, BIP then

begins trying to recognize another word at the point at which the pre-

vious word terminates.

In extending the tree to recognize a new word, BIP simply continues

to accept new characters until it receives a boundary character. For .

each new character it adds a new node as a branch from the previous node.

When a boundary character is reached, a new data structure (the symbol)

is created to associate with the word and a pointer to this structure is

stored at the terminal node along with the current context mark; the

pointer is stacked on the data stack; and BIP begins trying to recognize

another word starting with the boundary character that terminated the

new word.

Note that because of the recognition philosophy of BIP it is neces-

sary to have a quotes context available to permit the definition of

symbols that contain substrings that are symbols and that include a

boundary character (once defined, the recognition philosophy permits

them to be recognized without any special considerations). For example,

we may wish to define the symbols * and *A where * is a boundary symbol.

Such a context is supplied as part of the SRI BIP; it has only one boundary

character, namely ", and only one syntax action (which is associated with

the quote symbol and returns BIP to the previous context). In the above

example, suppose we have previously defined * and A as symbols so that

they are also boundary characters, and that the action for " in the cur-

rent context causes the quotes context to be entered.
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Then we would write "*AM to define the new word; thereafter, *, A, and

*A would be recognized as distinct words.

The recognition and definition of words are lexical actions that

are performed by BIP. A user may specify that within any particular

context every time a designated word has been recognized a certain syn-

tax action should be taken. This syntax action can be evaluation of an

arbitrary function that has been supplied by the user and defined as an

action associated with the symbol in the current context. The execution

of the action is based on a priority scheme as shown in the flow chart

and consists of the execution of an immediate action and possibly an

arbitrary number of delayed actions from the operator stack or from the

current action (in the order indicated in the flow chart). Since any

action (immediate or delayed) is a program, it may do any amount of

processing desired; it may work on any of its own data structures or

any of BIP's structures (thus effecting BIP's operation) and call any

routines whatsoever as subroutines, including the BIP translator itself.

In particular, an action may access and alter the data stack (i.e.

DATASK) so that the translator acts like a one-stack precedence parser.

When the action program is finished, it returns control to BIP which

then continues recognizing words in the input stream.

The SRI BIP translator can operate in or out of definition mode.

When definition mode is on, all new words are entered into the recog-

nition tree. When it is off, new words are not entered into the

recognition tree. A typical use of the mode switch

119



would be to have it on when actions are being defined for key words

(e.g. begin, end, if, then) and then turn the switch off when the only

new words being encountered are identifiers and numbers. Since the

standard BIP:CRSYM will always return the same symbol name for a given

word (i.e. the atom whose name is the same as the word), then it is

unnecessary and wasteful to have these words in the recognition tree.

Definition mode is defined by the value of identifier DEFSWITCH; T

denotes definition mode on, NIL denotes off. The translator initializes

DEFSWITCH to T.

Note that any one character word which is entered into the tree is

also added to the boundary-character list. This is the only built-in

mechanism for defining new boundary characters.

If evaluation of an immediate or delayed action causes the value of

BIP:RETURN to be set to T, then the translator will return to LISP with

a value of NIL immediately following evaluation of the action. This is

the only exit mechanism provided in BIP.

INITIAL CONTEXTS

A base context is provided in SRI BIP which includes the necessary

facilities for the user to define the language he wishes BIP to read.

When the translator is called, this base context (called BIP:BASECON)

is made the current context. In normal BIP usage new contexts are

created as copies of existing contexts and then built up incrementally;

hence all of a user's contexts can have the facilities included in the

base context. BIP:BASECON is defined as follows:
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Context mark :

Boundary characters

Actions :

(blank)
(carriage return)
(line feed)

MARK

(blank)(carriage return)(line feed)

t

Read to the next character which is not
(blank), (carriage return), or (line feed).

Read to the character following the next
line feed. Note, this allows comments to
be placed on an input line following a
semicolon.

Enter the quotes context. The quotes con-
text allows the definition of words contain-
ing boundary characters (see the discussion
above in the section describing the trans-
lator and the description below of the quotes
context) .

Use the READ function to read a LISP s-
expression and push a pointer to the
expression onto the data stack.

The LISP s-expression named in the top of
the data stack is popped off the stack and
then evaluated using EVAL.

Exit from BIP with the value NIL.

The quote context (named BIPrQUOCON) referred to above in the

description of the translator and in the base context's action for

double quote is defined as follows :

Boundary characters:

Actions: - return to the previous context.
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AUXILIARY FUNCTIONS

The following functions are currently defined in SRI BIP:

BIP:ENCON—a MACRO which takes a context pointer as an argument. The

context is pushed onto the translator's context stack and

made the current context.

BIP:DEFACT—an EXPR taking no arguments which defines the second

element in the data stack as the action for the symbol which

is pointed to by the top element in the data stack and does

two pop operations on the data stack. The definition is

made for the current context. For example, the action for

the character t in the context BIP:BASECON could be defined

as follows:

'(100 (SETQ BIP:RETURN T)) t '(BIP:DEFACT)..

BIP:CRECON—an EXPR taking no arguments whose value is a newly

created context which has the same recognition tree and con-

text mark as the current context and a boundary-character

list and actions list which are copies of those of the current

context. The user may wish to write other context-creating

functions which give the new context a different context

mark, a copy of the current context's recognition tree> etc.

BIP:CRECON is the only context-creating function provided in SRI BIP.

BIP:DEFCURCON—an EXPR taking no arguments which makes the top

context in the context stack the current context.

BIP:RETCON—an EXPR which takes either a positive integer or a

context name as an argument. If the argument is an integer
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k, then the context stack is popped k times; if the argument

is a context namei then the context stack is popped until the

named context becomes the top element of the stack. After the

popping operations are completed, the top element in the con-

text stack is made the current context.

BIP-.SKTOP—a MACRO taking the name of a stack as its argument and

returning as its value the top element in that stack.

BIP:SKPOP—an FEXPR taking the name of a stack as its argument

which pops the stack and returns as its value the element

which was popped off the stack.

BIP:SKPUSH—a MACRO which takes a pointer and a stack name as

arguments and adds the pointer to the top of the stack. The

value of BIP:SKPUSH is a pointer to the resulting stack.

EXAMPLE

To illustrate the use of BIP we present a set of action definitions

which will transform algebraic infix expressions into equivalent LISP

s-expressions; e.g. A + B will be transformed into (*PLUS A B). The

following are examples from the class of expressions to be translated:

A+B+C

(A+B)*C

A+B/-C

Assuming that LISP has been entered and that the BIP functions have been

loaded, the following input sequence will make the desired definitions

in a newly created context named INFIX.
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*(DF DEFBINEXP (L) (BIPrSKPUSH (CONS (CAR L) (REVERSE (LIST (BIP:SKPOP
* DATASK) (BIP:SKPOP DATASK)))) DATASK))

(DEFBINEXP)

* (BIP)
*'(BIP:ENCON (SETQ INFIX (BIP:CRECON)))..; DEFINE AND ENTER CONTEXT INFIX
*'(6 NIL (DEFBINEXP *PLUS)) + '(BIP:DEFACT)..; DEFINE THE ACTION FOR +
*'(4 NIL (DEFBINEXP *TIMES)) * '(BIP:DEFACT)..; DEFINE THE ACTION FOR *
*'(4 NIL (DEFBINEXP *QUO)) / '(BIPrDEFACT)..; DEFINE THE ACTION FOR /
*'(2 NIL (BIP-.SKPUSH (LIST ©MINUS (BIP:SKPOP DATASK)) DATASK)) -
'*'(BIP:DEFACT).. ; DEFINE THE ACTION FOR -
*'(0 (BIP:SKPUSH @(8) OPERSK)) ( '(BIP :DEFACT)..; DEFINE THE ACTION FOR (
*'(8) ) '(BIP rDEFACT)..; DEFINE THE ACTION FOR )
*'(SETQ DEFSWITCH NIL)..; TURN OFF DEFINITION MODE

The function DEFBINEXP creates an s-expression to represent a

binary algebraic expression. The argument to DEFBINEXP specifies the

first element of the created s-expression (the operator)i and the top

two elements on the data stack specify the second and third elements of

the s-expression (the operands). The resulting s-expression is pushed

onto the data stack.

The priorities associated with each action provide the desired

operator hierarchy. The immediate action for '(' pushes onto the opera-

tor stack an action with a lower priority than for any of the operators;

the action for *)' is NIL, but its low priority will cause the execution

of all delayed actions up to and including the one put into the operator

stack by the most recent '('.

Any problems or questions should be directed to Richard Fikes,

Room K2090, Extension 4620.
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Figure 1 The BIP Translator
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Appendix F

A COST-EFFECTIVENESS BASIS FOR ROBOT PROBLEM-SOLVING AND EXECUTION
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A COST-EFFECTIVENESS BASIS FOR ROBOT PROBLEM-SOLVING AND EXECUTION

Introduction

Mosti if not all, of the formalized approaches to problem-solving in

Artificial Intelligence and robotry to date have been planners exclusively.

That is, they deal with a domain represented by an internal computer model,

and they plan — using various methods — a strategy of actions that is

supposed to achieve a desired goal. These approaches all have the inherent

property that the plan that solves the problem by the criteria of the

planning system has also solved the problem from the experimenter's viewpoint.

In other words, the problem domain in the experimenter's mind is the same as

that in the system's internal model. When the system reports a solution to

a problem, the experimenter can and does check the solution by reviewing it

step by step to see if it matches "sound" reasoning done in his own mind.

In most or all such systems, the effects of the operators or procedures

that may be used to form a solution are entirely known. (Otherwise, "sound

reasoning" becomes difficult or impossible.)

Hence, the experimenter who deals with such a system takes a problem

known to him, commonly a puzzle or board game, and codifies it in a computer

model that is isomorphic to the original. When the system reports its

solution to the modeled program, he is happy that it has solved "his problem."

The existence of this isomorphism, however, means that one can only

give the system problems that are essentially in the domain of mathematics.

They are crisp, exact — uncertain only if they impinge on Godel's

incompleteness theorem. If they purport to reflect real-world, physical

problems, the models to date do so only in the most trivial, idealized

fashion. If an operator is intended to do something, it will get done.
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The complexity and uncertainty inherent in real-world situations and actions

are simply not present. This has been the case so far with all the problem

formulations given to the problem solver in my group (the QA3 theorem-prover)

Of the eleven problems given to the General Problem Solver (GPS) in Ernst

and Newell*s recent book, only one (the monkey problem) modeled a physical

problem, and that in the most idealized terms.

This aspect of the current approaches may be criticized, in my view, as

a serious limitation — in fact, an overriding one — when the application

of problem-solving to robotry is considered. It is fundamental that a robot

moving in physical space will be subjected to inaccuracies and uncertainties

that are beyond the representational capability of the internal model. Dr.

Bertram Raphael put it nicely thus: "the ultimate-data base for a robot

resides not in the computer but in the actual room around the robot." (The

model will, in general, be inadequate in other non-physical respects as well,

but this just adds weight to the argument.) Thus, the isomorphism is

necessarily broken: an internal problem solution can never be guaranteed to

be an external one. Instead, the proof will be in the pudding, and we

demand for the solution of our external problem that the robot execute as

well as plan, that it act on elements of the plan in addition to thinking

them up.

Furthermore, it is not sufficient for the system to think up a plan and

then simply turn the physical robot loose on it. Because the outcomes of

actions cannot be known for sure, any decent system should monitor the

execution of the plan, ready to interrupt if the actual sequence of events

diverges from the plan and the attainment of the goal seems unlikely.
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There is another requirement. As a step toward reflecting the uncertainty

of the physical situation, our desired model will come to include estimates of

uncertainty and probability. When this happens, the system will no longer be

able to produce a proof that a given sequence of actions will solve a problem;

it can only demonstrate a probable outcome. Furthermore, in a long sequence

of actions, the probability of following any particular path may become low

enough that further contingency planning is not worth the effort. It is more

valuable to proceed along .the existing portion of the plan and find out what

happens before planning further. Thus, the robot must acquire the capability

to act before it has completed a plan.

In summary, I have argued that any physical robot is beset by uncertainties

surpassing its model, that to experiment with the behavior of such a robot we

must deal with execution as well as planning, and that the system will have to

decide at times to stop planning and act and at other times to stop acting and

plan. To my (admittedly incomplete) knowledge of the AI literature, this topic

has not yet been touched — beyond, perhaps, being given lip service.

A new basis is needed that allows planning and execution to be put on the

same footing and related within a decision-making structure. For this basis,

I have adopted a broad framework: that of cost-effectiveness, or utility

theory. By representing both planning actions and execution actions as

elements of strategy possessing costs and effectiveness, we achieve a conceptual

framework adequate for the needs noted above. We acquire harmony with the

ideas of uncertainty and probability and randomness, and with the concept of

progress in an incomplete proof or execution and how to deal with it. We

are able to treat sensibly the problems of multiple goals and time-varying

goals, and the question of when to quit trying to solve a problem.
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In short, I would say that the new framework breaks out of confines

imposed by purely deductive processing. GPS took a step in this direction,

with its means-end analysis and non-binary difference measures. The path

ahead is being explored by probability theorists, proponents of modal logic,

and students of the "fuzzy set" concept of Lotfi Zadeh. Arduous though it

will be, I feel this is a path we must follow in the development of

Artificial Intelligence for use in the real world.

Development of the Framework

I shall now attempt to motivate and develop a cost-effectiveness frame-

work in which to study, describe, and hopefully even implement a robot executive,

This framework begins with the notions of states, operators, and transitions

in the different worlds (or spaces) viewed by the experimenter and the robot

system. It then introduces the idea of effectiveness (positive value or

utility, which ultimately derives from the attainment of goals) and the idea

of cost (negative value or utility, which has as one of its most important

sources the very passage of time), and shows how effectiveness and cost

propagate through the state spaces.

(A caution and plea to the reader: I am going to be putting down a fair

number of symbols and expressions, most of which won't get wrapped up into

tidy equations. These are meant to serve more as shorthand and memory aids

than as parts of a "mathematical" treatment. One of the great advantages of

the cost-effectiveness viewpoint and the idea of probable outcomes, at least

for me, is the feel of what is going on. As I try to work through examples

and developments, I can almost see some sort of a mind's-eye robot taking
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actions and maybe ending up one way, maybe another. And it seems to help

to envision being handed a certain amount of money if a goal is achieved,

losing another amount if a passage of time occurs, etc. In other words,

intuition and gedanken-ing have been my main tools in this development.

I shall try to assist your sharing my intuition, through the text. If you

can achieve such intuition, and "feel" what is being described, you will

understand this framework and, I hope, will believe in it. Long proofs and

tedious defenses won't be necessary. If, on the other hand, you don't make

your own personal association of meanings with the symbols and expressions

that appear, the whole thing will probably look like an exercise in symbol-

pushing and you will quit in bafflement and annoyance. The ideas are

intuitive; I am trying for persuasion, rather than proof; please try to

feel the development.)
i

Robot World-States and Model-States

Our fundamental postulate is that the robot and its physical surroundings

are not isomorphically modeled inside the robot's computer. Accordingly,

we need to distinguish between W, the external world or environment of the

robot, and M, the robot's internal model of the world. At a given point in

time, W is in some state W. and M is in some state M..

We can associate W with the experimenter's (presumably omniscient) view

of the robot and its real surroundings. For example, the SRI robot currently

operates in an environment consisting of a collection of office-type rooms

and corridors, largely empty except for doorways, baseboard moldings, an assort-

ment of large, movable wooden boxes, and perhaps some office furniture.

135



(Incidentally, this type of environment, and tasks such as exploring it, going

to particular places, and pushing the movable boxes, will provide the

descriptive examples and terminology throughout this paper.) W. for this

robot would consist of knowledge of the room layout, plus specification of

the identities, x-y positions and angular orientations of the various objects

including the robot. If doors were involved, their state of openness would

be included, and so on.

We use M to denote the robot's model, a certain defined body of

information inside the robot's computer that represents the robot program's

knowledge of its situation. Given the present state of the art, M will tend

to present a very simplified and stylized reflection of W. (The very reason,

of course, why we and other researchers set up such clean environments for

our robots is an attempt to create worlds so simplified that our models can

even begin to represent them.)

We will take the view that the only information about the robot's

condition that the robot program can directly access is that in M.. If the

program wishes to learn something from W., it must invoke some sensing

operator or action operator, which will cause a state transition in M-space

and possibly also in W-space. The new information about the robot's

environment that,is available to the robot program is that which appears in

the new model-state M . .
J

Thus, the act of perception is represented by an explicit operator, and

the vagaries of perception can be treated by the probabilistic transformation

structure that we shall develop below. Handling perception thus is part and

parcel of our recognition that the world and the robot's model of it are two

different things .
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In our present plans for the SRI robot, the model M will consist of

ordered n-tuples of information. The following unofficial but illustrative

sample should be largely self-explanatory.

(X

(Y

(9

(IN

(OBTYP

(NAME

(NAME

ROBOT

ROBOT

ROBOT

ROBOT

OBJ2

OBJ2

OBJ0

37.6)

- 5.0)

47.0)

OBJ2)

ROOM)

JOHN'S)

K2060)

(X

(Y

(OBTYP

(COLOR

(DOOROF

OBJ

OBJ

OBJ

OBJ^

OBJ2

50.0)

20.0)

BOX )

RED )

OBJ3)

(STATUS OBJ, OPEN)

(NORTHWALL OBJ2 43.3), etc.

(The reader should not be dismayed if this sample seems to raise many

questions of representation. The problem of representing real situations is

an extremely difficult one, which can be expected to occupy AI researchers

for decades. In fact, I consider this problem — which can also be stated

as that of developing a machine epistemology for AI — to be the central

and ultimate challenge of AI research. The sample shown above is presented

only for the purpose of establishing some intuitive material for future

examples and discussions.)
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Operators> Probable Outcomes» and Estimates

The robot has available to it a certain repertoire of operators: for

example, turn, move forward, and many more. An operator, depending on its type,

may or may not cause a change in W (in other words, a transition from some W.

to some W.). Similarly, an operator may or may not cause a change in M.
J

In a purely non-physical computer program, and also in human thought,

the distinction between the operator and the result it achieves tends to be

blurred. On a chessboard, for example, "pawn-to-King-four" names the action

and the result simultaneously.

When dealing with a robot, by contrast, we must differentiate between

the operator, the change it produces in W, and the change it produces in M.

When we speak of an operator as move ahead four feet or go to x = 20.6,

y = 6.7," we are actually naming the operator according to its nominal,

or desired, result. The real robot will most certainly not move ahead four

feet exactly in W. Given a clear path, it may move ahead a random distance

described by a Gaussian distribution with a mean of 3.92 feet and a standard

deviation of 0.2 feet (and turn and drift sideways randomly as well). Given

an obstacle in the path, the robot may stop at any point. What happens to M,

moreover, depends not only on what happens to W but on the system that feeds

information from W back to M.

In some respects (such as whether there is an obstacle in the path) we

may consider that the experimenter knows exactly what will happen. In other

respects (such as the random stopping distance described above) the experimenter

does not know what will happen, and we will conceptually describe his (or our)

state of partial ignorance with a probability density function.
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W. or M may be taken to represent all outcomes of a move-four-feet operation
J a

when no obstacle is encountered, and so on. Of course, these groupings are

approximations, and how to handle the compounding of such approximations is

an unsolved problem. Finally, it is possible to view the probabilistic branch-

ing as "playing a game with nature." One chooses an operator 0, and nature

responds with a resulting state. Some aspects of AI research in game-playing

may be applicable. However, nature here plays probabilistically, not to

maximize value, as is assumed in classic game theory and in most research.

Now the robot's executive program, much more than the experimenter, will

be burdened with ignorance about the outcomes of operations. Thus, the

program needs to estimate the probable outcomes,and its estimates can be

represented by a similar diagram:

This diagram is drawn only in M-space because the program has access only to

M-space; it never "sees' W-space directly.

The various estimates made by various robot programs may range all the

way from simple-minded assumptions that the desired result will always occur

to highly sophisticated calculations involving information from the model,

learning from past experiences, and so on. The estimates may be quite accurate

or totally fallacious in any given situation. They may appear as probability

calculations, or in some other guise. In any case, we conceptually view any

assumption made by the program about the outcome of an action as a probability

estimate of this form.
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(Of course, these probability functions will often be extremely complex

and beyond calculation. I take the view, however, that the probability

concept is both a fruitful and a philosophically valid one (two different

things) for representing partial knowledge in'a decision-making situation.

Throughout this development there will be many such functions named and left

unexamined. Finding workable approximations ctr equivalent methods is the

task of research. This paper aims to create a framework, not fill in all the

blanks.)

We can represent diagrammatically the idea that an operator, applied to

a state of either W or M, will give rise to different results according to

some probability:

Several points may be noted. First, we have emphasized the separateness of

W-space and M-space. Second, although not shown, 0 may represent an instance

of an operator, selected by parameters (such as "move four feet"). Third,

the outcomes and their probabilities will generally depend on both 0 and the

initial state, and perhaps on other variables in the robot system through their

implicit relationship with 0. Fourth, one will often in practice use a

grouping of final states: for example,
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Goals, Payoffs, and Time

A goal for the robot (synonymous with a problem to be solved) is

represented as a state, or set of states, for the robot to achieve. Often

a partial state description is given, such as telling the robot to go to a

certain place, with the understanding that any state satisfying the stipulation

achieves the goal. For visibility, we shall often show a goal state in W-space

or M-space as^CH .

It should be noted that a goal can be specified to the robot system

only in M-space, since the system is not directly cognizant of W-space.

Overlooking this fact (tantamount to re-establishing the isomorphism between

W and M) has unfortunately helped lead some to talk of M-space specifications,

for example "go to Room K2060," as if they were unique problems in W. In fact,

there are as many such problems as there are robots, worlds, and starting

states — in other words, contexts or frames for the goal specification.

Associated with each goal — and we shall be quite happy to accommodate

multiple goals — is a payoff UQ measured in units of utility. tL, represents

the value to be realized by the achievement of the goal.

In the simple case, l£is merely a constant. However, one could envision

more complex goal specifications, containing subclasses with differing Vf "s

depending on the route taken to the goal, resources used, etc. (We

shall see that such factors are often better expressed as costs on the way to

the goal.)

Most importantly, and requiring some discussion, utility is related to time.

A quick solution to a problem is considered better than a slow one, and must

be made to appear so to the robot system. We all know that the familiar

exhaustive solutions" that take longer than the age of the universe are not

solutions at all for our purposes.
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In some instances the goal might have an explicit time constraint, such

as "find a red cube within five minutes," and then the payoff would be

explicitly time-varying. Usually, however, it will be natural and effective

to let the payoff of the goal(s) be fixed and associate a negative utility,

or cost, with the passage of time.

This cost of time is not intended to reflect the expenditure of power

or other resources by the robot system; these can appear later as explicit

costs in the formulation. The cost is intended to reflect the basic fact

that the employment of any person or machine to perform a function generally

has a cost per unit time; hence, a faster system is a better system. Experi-

mentation with a robot system that has any capacity to schedule its own

behavior should reflect this fact. Even if the model of a useful robot were

discarded as a reason, the value of the experimenter's own time would lead to

the establishment of such a cost.

Now it is true that most existing problem-solvers do not associate any

cost with time. They work on a single problem; the problem at hand is the

entire world to them; they pursue it until they succeed or demonstrably fail

or the experimenter cuts off the run. But how can such a system arrange
/

intelligently to handle multiple, coexisting goals with different priorities?

Only by being able to schedule itself can such a system perform, and this

requires estimating the cost, in time, of its actions and relating the cost

to the utility of its goals. Our framework will provide a system that can

drop one goal, or line of action, if its prospects become bleak or another

more promising one is injected. Furthermore, the system can terminate its

activity by deciding that a goal is no longer worth working on. (The reader

may suddenly picture himself confronted with a stubborn robot that refuses to
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work on a perfectly good problem that he wants worked on in any case; if

this happens, either the robot's estimates or the assigned ratios between

goal payoff and time cost are wrong. The dubious reader is invited to

ponder this for himself.)

In a later section we will continue the discussion of utility, showing

how it can be "backed up" from state to state, using the costs and probabilities

associated with operators. But first we must examine the role of planning in

the robot system and determine the space (neither W nor M) in which the

system will be considered to operate.

x

Planning and the Knowledge-Space S

In the discussions above, we have provided settings for the robot's

active and perceptual operations. Actions are operators that change the state

of the world W, and very likely of the world-model M; perceptual operators are

certain ones involving the physical robot but devoted primarily to updating

information in M. We have described how the non-trivial relation between

an action and its outcomes is encompassed by describing the action with pro-

babilistic state transitions, and the non-trivial nature of perception is handled

by describing their effects on M the same way.

It remains to provide a setting for the planning (or "thinking," or

cognitive) operations of the robot program. In doing so, we propose to limit

sharply the scope of the model M, to that information which directly represents

a model of the world-state at a given instant in time. Information generated

or obtained by the robot program above and beyond what is in M will be

represented in a new space, which we shall denote as S. To illustrate, the
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knowledge that the robot is in Room is an element of M, but the knowledge

or deduction that, if the robot invokes operator O it may then be in Room ,
£t

*
is outside of M and is an element of S.

In fact, the intuitive definition of S is that it is the space of

states of knowledge of the robot program. Thinking or planning activities

of the robot will generally cause a change of state in S, by adding knowledge

to the system. Execution actions of the type discussed previously will in

general advance M in time, thus rendering some knowledge in S obsolete and

pruning the knowledge tree. Planning and execution then become related

as alternative operators that can cause transitions in the new space S.

We will in turn be able to discuss utilities and probable outcomes in S,

thereby arriving at a rational, cost-effectiveness based framework that

includes and relates robot planning and execution.

An Example of a Knowledge-Space

We will illustrate the structure and the use of the knowledge-space S

by means of an example drawn at the simplest possible level. Although I

believe this example is authentic in spirit, I do not claim that it is a

finished product nor that it truly represents any realistic robot system.

It is stripped down to the bare bones, and its purpose is to illustrate a

space S as plainly as possible.

Consider a robot that is in a world-state W and model-state M , and
o o

is to achieve a goal G. (G is a state specification in M.) For our example,

we will assume that the robot is at some point within a single closed

rectangular room,that the room contains some boxes, and that the goal is

j

Note added in proof: Thus, goals such as "explore" and "visit all rooms" are
inherently outside of M. We should take the viewpoint (which the paper
currently does not) that goals are state specifications in S, only some of
which happen to correspond directly to states in M.
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to have the robot at some other specified point in the room. The reader can

visualize the world-state W for himself, and he can, take the sample model

given in an earlier section, suitably completed, as representing M . The
o

goal specification is

(X ROBOT X_)
Ci

(Y ROBOT Y_)
G

where X and Y_ are the co-ordinates of the goal point.
U G

We explicitly separate planning and execution. We assume that the

robot program has available to it two planning operators, A and B. Planner A,

if invoked while the model is a state M , may or may not succeed in producing

a plan (denoted AA) for achieving the goal. If a plan AA is produced, and if

it is executed while the model is in state M and the world is in state W ,o .o

the plan in turn may or may not achieve the goal G. Similarly, planning

operator B under the same conditions may or may not produce a plan BB, which

in turn may or may not achieve G.

We make two simplifying assumptions. First, we assume that the execution

of a plan proceeds as an unbroken unit and hence may be considered as a single

operator for our purposes. Second, we assume (somewhat unrealistically) that

if an execution operator fails to achieve the goal, it leaves the world in

state W and the model in state M . Thus, M and G are the only model-stateso o o J

involved in our example.

(Although it is not strictly necessary for the development, the reader

may find it helpful to carry a mental picture such as the following. Planner A

checks whether the straight-line path from the robot's position to the goal

is clear in the model. If so, A generates a plan AA which consists of a
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simple turn and move forward to the goal. Planner B is a more complex

algorithm for route finding among obstacles. (Various algorithms, such as

Moore's method and the tangent-point graph procedure, have been investigated

in our group.) B will not produce a plan BB if it thinks that no through

path exists. B is more "sophisticated" than A. B will generally find a

plan whenever A does, but that might not be the case if B demands a greater

tolerance for skirting obstacles. Given a model that accurately reflects

the world/both planners will produce only successful plans; given an

inaccurate model, either one might produce the higher percentage of

unsuccessful plans. We simplify further by identifying modeled success

with external success: if the planned moves go to completion without an

unexpected bump, we assume that the goal conditions are achieved in the

model and that the robot moves close enough to the physical goal in W to

satisfy the experimenter. If a bump occurs, the robot retraces its path

and leaves the world in state W and the model in state M .)
o o

Considering now the beginning of our example experiment, we observe

first that the execution operators potentially specified by plans AA and BB

cannot be chosen by the system because it has not thought of them yet.

(If this seems somewhat foreign, it is because we are conditioned to the

type of system described in the introductory section, in which successful

planning implies and even constitutes successful execution.) The only

operators potentially capable of changing the state of the system in

S-space, that are available at the outset, are A and B.

We take the view that the system always knows, at a primitive level,

which planning operators are potentially applicable and which have already

been tried, in any given state S^ in knowledge space. That is, we assume

that those calculations are built into the system and done without cost
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whenever needed, rather than themselves being subject to the cost-effectiveness

mechanism. This point will be discussed fully later.

In our example, we may represent the starting state of knowledge S^ thus:

s,
Mo 6-

A
B

This informal diagram means that, in the state Sj_, the current state of model-

space is M and the goal is G. The system currently has available to it

planning operators A and B, and no execution operators.

Suppose now that the system chooses to invoke planner A. Invoking A

will cause a probabilisitic state transition in the knowledge space S, with

two possible outcomes, according to whether or not A produces a plan.

Let us examine the plan that A might produce. Viewed in M-space, the

plan has the form shown in an earlier section:

Oftflr> i /} A \ ^A", \ I - Fr I a., f\ A=x r. O ' -^/?

Put in English, the plan is something like this: "While in state l\j, invoke

operator 0... With estimated probability E , the goal G will be achieved
AA AA

in M-space. Otherwise (in this example) the state of M will be unchanged."

(E is the program's estimate; it may, of course, not match our own
A A i i i

"omniscient" value P for the probability of success of the operator. A
AA

simple planner may put E. = 1, while we know very well that the planned
AA

action will fail sometimes.)

Now let us consider the same plan from the viewpoint of S-space. Here

it appears as a new execution operator AA which can be selected by the system.

Since there is something new relative to the starting state S, the system
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must be in a new state of knowledge S2. We can draw the S-space view of

the plan thus: S^. - S-=

Mo G-
£^ A AXTI * \ r \

B

A A (-EM*.
Eftrtl

Mo (5-

B

The interpretation of this diagram is that the application of AA while

in state E2 is estimated, with probability E.., to achieve the goal state

Sg. (Sg is defined in this simple example as any state of knowledge in

which the model achieves state (V). By our previous simplifying assumptions,

the problem is then solved, and nothing else matters.) If AA fails to

achieve the goal state, the system will then be in a new state of knowledge,

S3, in which AA has been exhausted. The appearance of crossed-out operator

symbols is a reminder that they are exhausted relative to the state of

knowledge in which they appear.

We may now include the starting state S1 and the outcomes of the

planning operator A in our diagram:

With estimated probability EA, planner A will produce the state of knowledge

S2 in which the plan AA exists. Otherwise, A is exhausted without producing

an AA, yielding a state equivalent to S_.
O

By applying the same considerations to planner B and its plan BB, we

obtain the complete "three-by-three" S-space transition diagram for our

(simple!) example, which is shown in Fig. 1. This diagram shows all the

possible states of knowledge, and the applicable operators at each state.
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In state Sg, both avenues A-AA and B-BB have failed, and the problem is

not solvable by the system.

In this example, the execution operators AA and BB bear a one-to-one

relationship to the plans described by transition diagrams in M-space. In

a more complicated system, this one-to-one relation might not hold. The

essential idea is that an operator in S-space is anything that changes the

state of knowledge of the system, whether it modifies the plan structure

by "thought" (adding, modifying, re-evaluating, or abandoning plans) or

by "execution" (which will in general prune part of the planning structure

and will in any case exhaust the execution operator relative to the current

state).
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The Analysis of Payoff in Knowledge Space

It is not possible to assign absolute utility values to the states of.

a graph such as that of Fig. 1, because of the existence of closed loops

with non-zero cumulative costs around the loops. (Another way of looking

at it is that states such as S, can be reached at different times by

different routes, hence with different time costs.) Instead, we must

deal with incremental amounts of utility, namely, payoffs. Payoffs may

be established for states in several ways.

First, payoffs may be assigned to terminal states, in which the

experiment ends. In our example, we assign payoff U-, to the goal state

SG in S-space, and we assign a payoff of zero to the state Sg, in which

the experiment must be terminated without success.

Second, payoffs may be backed up to a state by the use of two rules.

Rule 1 states that the expected payoff of applying operator 0 in state

S., denoted U., is the average of the payoffs U. of the possible outcomes

of 0, less the costs of the transition, weighted according to estimated

probability. Thus,

Rule 1 : U?=£P.(U.-C.),1 j J J y
where P. represents an estimate of the probability of reaching state S. by

invoking operator 0 in state S., and C. is the cost along that branch. (If

the C.'s are all equal, they can be represented by a single C, and the

formula becomes SP.U.-C.) Note that if the robot system rather than the

experimenter is doing the estimating, its probability estimates E. are used

for P..

Rule 2 states that the expected payoff of a state is the maximum, over

all operators applicable in that state, of the payoffs for each operator. Thus,

Rule 2: U.=max U., over all 0i i
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Finally, payoffs may be evaluated (either for a state or for the

application of an operator to a state) by an evaluation mechanism that

uses the data describing the state and/or operator in question.

The methods above are fully analogous to those of game-playing programs

and game theory, with the difference (as noted earlier) that the "opponent"

behaves probabilistically rather to maximize his own utility. The branch

points for probable outcomes of operators are the analogs of the alternate

plies in a game tree, at which the opponent moves. In fact, I believe that

a variant of game theory that deals with a "probabilistic opponent" has been

developed under the name of "expectamaxing," analogus to "minimaxing."

Let us see what would be required to back up payoffs throughout the

state space of Figure 1 from the terminal states. Figure 2 shows the space

again, with the costs and expected probabilities of outcomes listed for

each operator. (We are assuming constant costs.) Using Rules 1 and 2,

the various utilities are calculated as follows. (The utilities for S.,

S_, and S0 are obtained from those for S,,, S_, and S, by interchanging A's and B's.)
/ o Z j o

n = uBB - P n -rU6 U6 ~ EBB UG CBB

U_ = U6. * EDU,-CD
O «J o O O

= E. .U,, + ( 1 - E A A ) U,-C..
*-» A A 11 A A r\ A A*_f f\f\ VJ f\f\ \j f\f\

u f * E B B u G + V-W VCBB

U2 =

= E A A U G * •C'-'W VCAA

2 = E B U 5 + C1-EB) VCB
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A complete backup of payoff would thus require knowing the costs C

and expected probabilities E of every operator. Within the limitations

inherent in the use of these quantities, complete look-ahead (as it is called

when viewed from the starting state at which a decision must be made)

provides an optimum rational basis for decision-making in the face of uncertainty.

In practice, of course, complete look-ahead is generally impossible.

In board games, it is often feasible to look ahead exhaustively through a few

levels of branching, and to do so with precision because all options of

self and opponent are known. At the tips of the look-ahead tree, unless

they are terminal, evaluation is employed to establish payoff utilities,

which are then backed up.

In the case of the robot state diagram, look-ahead is likely to be

abandoned much sooner. The introduction of costs and probabilities, together

with the knowledge that we will never in practice determine most of them

beyond an educated (or uneducated) guess, will undoubtedly induce us to

abandon look-ahead at an early point—even at the starting state! -- and

rely on evaluation of the available operators.

Thus, we are led to consider the means by which operators may be

evaluated. Most simply, the payoff of an operator may be taken as a

constant, or, better, a constant £1 times the payoff of the goal in question.

For the purpose of decision-making without look-ahead, it would suffice

even to rank-order the available operators. Any program that has a fixed

order of application of its operators is in effect rank-ordering them. A

more powerful technique is to evaluate the expected payoff of an operator

in the context of the current state. (Deciding whether an operator is
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applicable to a given state is an extreme example of this.) In our robot

example, the evaluation of the expected payoffs of the planners might

reasonably be made to depend on the distance from the robot to the goal,

the count of boxes in the room, and so on.

Conceptually, the spectrum of possible evaluators reaches all the way

to those that would simulate every action of the operator being evaluated.

Such an evaluator would of course be worse than useless, because it would be

as complex, bulky, and costly to run as the operator it copies. Generally,

the idea is for a simulation to be an inexpensive approximation to the

simuland. But what if, as may often be the case, there appears to be no

worthy approximation to the operator simpler than the operator itself?

I offer, as an interesting topic to explore, that of letting some of the

operators in the system act as their own simulations. For example, if the

routines that cause motors to turn, etc. on the physical robot were

temporarily replaced by dummy simulations, it would be possible actually

to call an execution operator in a kind of Gedanken mode, and use the outcome

of this Gedanken-experiment to evaluate the operator. The evaluation would

automatically occur in the context of the present state of knowledge; the

current model M, and so on. Because physical motions of the robot would

be avoided, the Gendanken world could run faster than real time and thus

meet the necessary requirement that the evaluator be less costly than the

operator being evaluated. Furthermore, once the Gedanken world were created,

any higher-level operator could be run in Gedanken mode without further ado.
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Hierarchical Organizations of Spaces

In our example used in the previous sections, we portrayed a two-level

hierarchy of spaces, namely, the model space M and the knowledge space S.

We concentrated on S, in an attempt to show how planners, plans, and executors

dealing with M could be related in a coherent framework from the viewpoint

of S-space. We can picture S-space as a kind of higher-level space, or

meta-space, relative to M.

Our postulated monitor, or S-spaceprogram, has a cost-effective view

of each of the lower-level operators it can invoke, such as a planner. Each

planner, in turn, could be viewed as having a cost-effective view of the

operators that it can choose in the construction of a plan. Whether or not

a given planner is actually programmed in this fashion is another matter.

I am claiming that the cost-effective framework is, first, a valid and all-

encompassing conceptual one for treating any decision-making system, and

second, a framework in which planners at any level could be coded. I am not

claiming that it is desirable or practical to do so. In fact, in view of

the rather tedious and abstract nature of state-space expansions, it is

probable that lower-level operators will be programmed more in pragmatic

and specialized fashion than as explicit cost-effectiveness calculators.

At the higher level, that of the monitor program that deals with S,

the chances are better for practical realization of a cost-effective

calculator. But it must be borne in mind that the monitor itself is

subject to design considerations, that our simple example tended to gloss

over.

Even in our example, there was a choice (which we discussed but did

not make) of how much look-ahead the monitor should perform. At one extreme,

the program could look ahead all the way to the terminal nodes, as we
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ourselves did in Fig. 2. At the other extreme, the program could perform

no look-ahead. Finding itself at a given state of knowledge, the monitor

could simply evaluate all the available S-space operators and choose the

one with the highest estimated payoff.

We also assumed, in the example, that the monitor could always enumerate

the available operators. This might not be the case in practice, and we

might have to describe for the monitor a strategy for choosing which operators

to choose for consideration by look-ahead and evaluation.

A further assumption in our example was that the monitor uses the

probability estimates E that the planners generate. This assumption is

not necessaryj the monitor could in fact modify the E's or make its own

entirely different estimates. The monitor's behavior could then be analogous

to that of a supervisor who didn't take on faith whatever his subordinates

told him about the projected success of their plans.

Another possible variation of the monitor is to allow the possibility

of quitting at any point. In S-space, this amounts to including, at every

state, an available operator that has zero cost and that always leads to a

terminal state with zero payoff. As a consequence, the monitor will never

proceed past a point at which the other operators all have negative expected

payoff. This would seem to be a pretty refinement in an experimental robot.

From the foregoing paragraphs, it should be clear that the design of

the S-space monitor is by no means fixed. In fact, there is an infinite

family of cost-effectiveness-based monitors, not to mention all the other

types of "monitors" that could be used to control the use of the lower-level

operators. Then, we can envision a given S-space monitor as being merely a

kind of higher-level planner, and we can picture a collection of such monitors

as being subject to regulation by a "meta-monitor" operating at a higher level.
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The meta-monitor might or might not be expressed in cost-effectiveness

terras; if it is, we can describe it as working in a higher meta-space S , for

which the available operators are the S-space monitors and, possibly, direct

use of lower-level planners and executors. The S-space programs might continue

to exist as true monitors (in that they can invoke execution operators),

or as Gedanken-monitors, or as high-level planners only, with the decision

to invoke executors left to the meta-monitor.

It is thus clear that, as we add additional levels to the control

hierarchy, richer and richer structures occur. Furthermore, it should be

evident that there is no end to the number of levels that can be added

(conceptually at least), and that from structure to structure the question

of the roles played by the various levels and operators is finally a matter

of choice, terminology, and concept. It is the task of robotry research

to develop and experiment with such structures, toward the twin goals of

achieving understanding of them and creating useful systems. This paper

has offered little specific guidance for this task, but it has established

the necessary conceptual framework for robot systems that act as well as

plan, and has suggested how operators based on the idea of cost-effectiveness

could be used at various levels within the system.

156



S - -fco*s,-tv:*M

a [>, | ', t u «.

157

-for -ft,



2-

158


