41 research outputs found

    Reação de polimerização em cadeia (PCR) em etapa única para diagnóstico de Leishmania do subgênero (Viannia)

    Get PDF
    No Brasil, o principal agente etiológico da leishmaniose, apresentando freqüentemente comprometimento das mucosas, pertence ao subgênero (Viannia). A conduta terapêutica no tratamento da leishmaniose depende de seu diagnóstico parasitológico e os métodos clássicos restringem sua identificação. Neste trabalho, descrevemos uma reação de PCR, utilizando primers desenhados a partir de seqüências repetitivas de mini-exons, que amplificam um fragmento de 177pb e que são capazes de distinguir o subgênero (Viannia) do subgênero (Leishmania), tornando-se uma ferramenta útil no diagnóstico desta doença.In Brazil, the main etiologic agent of Leishmaniasis that frequently presents with mucosal involvement belongs to the Viannia subgenus. The therapeutic conduct in this disease depends on the parasitological diagnosis, and classical methods are restricted in identifying the agent. In this paper we describe a polymerase chain reaction (PCR), which uses primers designed from mini-exons repetitive sequences. The PCR amplifies a 177bp fragment that can distinguish (Viannia) from (Leishmania) subgenus. This test could be a useful diagnostic tool

    Aspectos epidemiológicos e ecológicos relacionados à malária na área de influência do lago da Represa de Porto Primavera, região oeste do Estado de São Paulo, Brasil

    Get PDF
    A study was carried out in the area of influence of the Porto Primavera Hydroelectric Power Station, in western São Paulo State, to investigate ecological and epidemiological aspects of malaria in the area and monitor the profile of the anopheline populations following the environmental changes brought about by the construction of the lake. Mosquitoes captured were analyzed by standardized indicator species analysis (ISA) before and during different flooding phases (253 m and 257 m elevations). The local human population was studied by means of parasitological (thin/thick blood smears), molecular (PCR) and serological tests. Serological tests consisted of Enzyme Linked Immunosorbent Assay (ELISA) with synthetic peptides of the circumsporozoite protein (CSP) from classic Plasmodium vivax, P. vivax variants (VK247 and "vivax-like"), P. malariae and P. falciparum and Indirect Immunofluorescence Assay (IFA) with asexual forms of P. vivax, P. malariae and P. falciparum. The results of the entomological survey indicated that, although the Anopheles darlingi population increased after the flooding, the population density remained very low. No malaria, parasite infection or DNA was detected in the inhabitants of the study area. However, there was a low frequency of antibodies against asexual forms and a significant prevalence of antibodies against P. vivax, P. vivax variants, P. falciparum and P. malariae; the presence of these antibodies may result from recent or less recent contact with human or simian Plasmodium (a parallel study in the same area revealed the existence of a sylvatic cycle). Nevertheless, these results suggest that, as in other places where malaria is present and potential vectors circulate, the local epidemiological conditions observed could potentially support the transmission of malaria in Porto Primavera Lake if infected individuals are introduced in sufficient numbers. Further studies are required to elucidate the phenomena described in this paper.Foi realizada pesquisa na área de influência do lago da Usina Hidrelétrica de Porto Primavera, região oeste do Estado de São Paulo, para estudar aspectos ecológicos e epidemiológicos da malária na localidade e acompanhar o perfil das populações de anofelinos frente às mudanças decorrentes do impacto ambiental pela formação do lago. Mosquitos capturados foram analisados pelo Índice de Abundância de Espécies Padronizado (IAEP), antes e durante o enchimento do reservatório (cotas 253 e 257 m). A população humana local foi estudada por meio de teste parasitológico (gota espessa e esfregaço sangüíneo), testes moleculares (PCR) e testes sorológicos. A sorologia consistiu na reação de ELISA com peptídeos sintéticos correspondentes à porção repetitiva da proteína circumsporozoíta (CSP) de Plasmodium vivax clássico, e suas variantes VK247 e "vivax-like", P. malariae e P. falciparum; e reação de Imunofluorescência Indireta (RIFI) com formas assexuadas de P. vivax, P. malariae e P. falciparum. Os resultados do estudo entomológico indicaram que, embora a população de Anopheles darlingi tenha aumentando após o enchimento, permaneceu em baixa densidade. Não foi detectada malária nem a presença de parasitos ou de DNA parasitário nos habitantes estudados. No entanto, foi observada baixa freqüência de anticorpos contra formas assexuadas e significativa prevalência de anticorpos contra esporozoítos de P. vivax e suas variantes, P. falciparum e P. malariae, que poderiam decorrer de contatos prévios, recentes ou não, com plasmódios humanos ou símios (o ciclo silvestre foi evidenciado em estudo paralelo realizado na mesma área). Por outro lado, estes resultados sugerem que, como em outros lugares onde existem vetores potenciais da malária, as condições epidemiológicas poderiam potencialmente permitir a transmissão da malária na área de influência do lago de Porto Primavera, se indivíduos infectados fossem introduzidos em número suficiente. Estudos adicionais deverão ser realizados para elucidar os fenômenos relatados neste artigo

    Merozoite surface protein-1 genetic diversity in Plasmodium malariae and Plasmodium brasilianum from Brazil

    Get PDF
    Abstract\ud \ud Background\ud The merozoite surface protein 1 (MSP1) gene encodes the major surface antigen of invasive forms of the Plasmodium erythrocytic stages and is considered a candidate vaccine antigen against malaria. Due to its polymorphisms, MSP1 is also useful for strain discrimination and consists of a good genetic marker. Sequence diversity in MSP1 has been analyzed in field isolates of three human parasites: P. falciparum, P. vivax, and P. ovale. However, the extent of variation in another human parasite, P. malariae, remains unknown. This parasite shows widespread, uneven distribution in tropical and subtropical regions throughout South America, Asia, and Africa. Interestingly, it is genetically indistinguishable from P. brasilianum, a parasite known to infect New World monkeys in Central and South America.\ud \ud \ud Methods\ud Specific fragments (1 to 5) covering 60 % of the MSP1 gene (mainly the putatively polymorphic regions), were amplified by PCR in isolates of P. malariae and P. brasilianum from different geographic origin and hosts. Sequencing of the PCR-amplified products or cloned PCR fragments was performed and the sequences were used to construct a phylogenetic tree by the maximum likelihood method. Data were computed to give insights into the evolutionary and phylogenetic relationships of these parasites.\ud \ud \ud Results\ud Except for fragment 4, sequences from all other fragments consisted of unpublished sequences. The most polymorphic gene region was fragment 2, and in samples where this region lacks polymorphism, all other regions are also identical. The low variability of the P. malariae msp1 sequences of these isolates and the identification of the same haplotype in those collected many years apart at different locations is compatible with a low transmission rate. We also found greater diversity among P. brasilianum isolates compared with P. malariae ones. Lastly, the sequences were segregated according to their geographic origins and hosts, showing a strong genetic and geographic structure.\ud \ud \ud Conclusions\ud Our data show that there is a low level of sequence diversity and a possible absence of allelic dimorphism of MSP1 in these parasites as opposed to other Plasmodium species. P. brasilianum strains apparently show greater divergence in comparison to P. malariae, thus P. malariae could derive from P. brasilianum, as it has been proposed.We are grateful to Profª Luzia Helena Carvalho (Laboratório de Malária,\ud Centro de Pesquisas René Rachou – FIOCRUZ) for provision of P. brasilianum\ud sample (Peruvian III strain). We are also grateful to Prof Luis Fabio Silveira\ud (Museu de Zoologia da Universidade de São Paulo) for the provision of P169\ud sample and Dra. Sandra do Lago Moraes (Instituto de Medicina Tropical de\ud São Paulo da Universidade de São Paulo) for the provision of 23PA, 50PA,\ud 66PA samples. This research was funded by CNPq (475727/2007-0 - Edital\ud Universal) and FAPESP to Karin Kirchgatter. Lilian de Oliveira Guimarães has a\ud CAPES scholarship, and J.M.P. Alves is supported by grant #2013/14622-3,\ud São Paulo Research Foundation

    Natural infection in anopheline species and its implications for autochthonous malaria in the Atlantic forest in Brazil

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud A descriptive study was carried out in an area of the Atlantic Forest with autochthonous malaria in the Parelheiros subdistrict on the periphery of the municipality of São Paulo to identify anopheline fauna and anophelines naturally infected with Plasmodium as well as to discuss their role in this peculiar epidemiological context.\ud \ud \ud \ud Methods\ud \ud Entomological captures were made from May 2009 to April 2011 using Shannon traps and automatic CDC traps in four areas chosen for their different patterns of human presence and incidences of malaria (anthropic zone 1, anthropic zone 2, transition zone and sylvatic zone). Natural Plasmodium infection was detected by nested PCR based on amplification of the 18S rRNA gene.\ud \ud \ud \ud Results\ud \ud In total, 6,073 anophelines were collected from May 2009 to April 2011, and six species were identified in the four zones. Anopheles cruzii was the predominant species in the three environments but was more abundant in the sylvatic zone.\ud Anopheles (Kerteszia) cruzii specimens from the anthropic and sylvatic zones were positive for P. vivax and P. malariae. An. (Ker.) bellator, An. (Nys.) triannulatus, An. (Nys.) strodei, An. (Nys.) lutzi and An. (Ano) maculipes were found in small numbers. Of these, An. (Nys.) triannulatus and An. (Nys.) lutzi, which were collected in the anthropic zone, were naturally infected with P. vivax while An. (Nys.) triannulatus from the anthropic zones and An. (Nys.) strodei from the transition zone were positive for P. malariae.\ud \ud \ud \ud Conclusion\ud \ud These results confirm that Anopheles (Kerteszia) cruzii plays an important role as a major Plasmodium vector. However, the finding of other naturally infected species may indicate that secondary vectors are also involved in the transmission of malaria in the study areas. These findings can be expected to help in the implementation of new measures to control autochthonous malaria in areas of the Atlantic Forest.We would like to thank the Health Surveillance Supervision Sector in the São Paulo Municipal Department of Health, the Pedro Matajs Institute and the São Paulo Metropolitan Police, the Marsilac Heath Center (UBS Marsilac) and the Embura Helth Center (UBS Embura).This project was supported by the Fundação de Amparo à Pesquisa (FAPESP) (n°. 2008/52016-0) and SUCEN

    Kerteszia subgenus of Anopheles associated with the Brazilian Atlantic rainforest:current knowledge and future challenges

    Get PDF
    Background: The Atlantic rainforest ecosystem, where bromeliads are abundant, provides an excellent environment for Kerteszia species, because these anophelines use the axils of those plants as larval habitat. Anopheles (K.) cruzii and Anopheles (K.) bellator are considered the primary vectors of malaria in the Atlantic forest. Although the incidence of malaria has declined in some areas of the Atlantic forest, autochthonous cases are still registered every year, with Anopheles cruzii being considered to be a primary vector of both human and simian Plasmodium. Methods: Recent publications that addressed ecological aspects that are important for understanding the involvement of Kerteszia species in the epidemiology of malaria in the Atlantic rainforest in the Neotropical Region were analysed. Conclusion: The current state of knowledge about Kerteszia species in relation to the Atlantic rainforest ecosystem was discussed. Emphasis was placed on ecological characteristics related to epidemiological aspects of this group of mosquitoes. The main objective was to investigate biological aspects of the species that should be given priority in future studie

    Epidemiologic aspects of the malaria transmission cycle in an area of very low incidence in Brazil

    Get PDF
    BACKGROUND: Extra-Amazonian autochthonous Plasmodium vivax infections have been reported in mountainous regions surrounded by the Atlantic Forest in Espírito Santo state, Brazil. METHODS: Sixty-five patients and 1,777 residents were surveyed between April 2001 and March 2004. Laboratory methods included thin and thick smears, multiplex-PCR, immunofluorescent assay (IFA) against P. vivax and Plasmodium malariae crude blood-stage antigens and enzyme-linked immunosorbent assay (ELISA) for antibodies against the P. vivax-complex (P. vivax and variants) and P. malariae/Plasmodium brasilianum circumsporozoite-protein (CSP) antigens. RESULTS: Average patient age was 35.1 years. Most (78.5%) were males; 64.6% lived in rural areas; 35.4% were farmers; and 12.3% students. There was no relevant history of travel. Ninety-five per cent of the patients were experiencing their first episode of malaria. Laboratory data from 51 patients were consistent with P. vivax infection, which was determined by thin smear. Of these samples, 48 were assayed by multiplex-PCR. Forty-five were positive for P. vivax, confirming the parasitological results, while P. malariae was detected in one sample and two gave negative results. Fifty percent of the 50 patients tested had IgG antibodies against the P. vivax-complex or P. malariae CSP as determined by ELISA. The percentages of residents with IgM and IgG antibodies detected by IFA for P. malariae, P. vivax and Plasmodium falciparum who did not complain of malaria symptoms at the time blood was collected were 30.1% and 56.5%, 6.2% and 37.7%, and 13.5% and 13%, respectively. The same sera that reacted to P. vivax also reacted to P. malariae. The following numbers of samples were positive in multiplex-PCR: 23 for P. vivax; 15 for P. malariae; 9 for P. falciparum and only one for P. falciparum and P. malariae. All thin and thick smears were negative. ELISA against CSP antigens was positive in 25.4%, 6.3%, 10.7% and 15.1% of the samples tested for "classical" P. vivax (VK210), VK247, P. vivax-like and P. malariae, respectively. Anopheline captures in the transmission area revealed only zoophilic and exophilic species. CONCLUSION: The low incidence of malaria cases, the finding of asymptomatic inhabitants and the geographic separation of patients allied to serological and molecular results raise the possibility of the existence of a simian reservoir in these areas

    Human migration and the spread of malaria parasites to the New World

    Get PDF
    We examined the mitogenomes of a large global collection of human malaria parasites to explore how and when Plasmodium falciparum and P. vivax entered the Americas. We found evidence of a significant contribution of African and South Asian lineages to present-day New World malaria parasites with additional P. vivax lineages appearing to originate from Melanesia that were putatively carried by the Australasian peoples who contributed genes to Native Americans. Importantly, mitochondrial lineages of the P. vivax-like species P. simium are shared by platyrrhine monkeys and humans in the Atlantic Forest ecosystem, but not across the Amazon, which most likely resulted from one or a few recent human-to-monkey transfers. While enslaved Africans were likely the main carriers of P. falciparum mitochondrial lineages into the Americas after the conquest, additional parasites carried by Australasian peoples in pre-Columbian times may have contributed to the extensive diversity of extant local populations of P. vivax
    corecore