48 research outputs found

    MBOAT7 is anchored to endomembranes by six transmembrane domains.

    Get PDF
    Abstract Membrane bound O-acyltransferase domain- containing 7 (MBOAT7, also known as LPIAT1) is a protein involved in the acyl chain remodeling of phospholipids via the Lands' cycle. The MBOAT7 is a susceptibility risk genetic locus for non-alcoholic fatty liver disease (NAFLD) and mental retardation. Although it has been shown that MBOAT7 is associated to membranes, the MBOAT7 topology remains unknown. To solve the topological organization of MBOAT7, we performed: A) solubilization of the total membrane fraction of cells overexpressing the recombinant MBOAT7-V5, which revealed MBOAT7 is an integral protein strongly attached to endomembranes; B) in silico analysis by using 22 computational methods, which predicted the number and localization of transmembrane domains of MBOAT7 with a range between 5 and 12; C) in vitro analysis of living cells transfected with GFP-tagged MBOAT7 full length and truncated forms, using a combination of Western Blotting, co-immunofluorescence and Fluorescence Protease Protection (FPP) assay; D) in vitro analysis of living cells transfected with FLAG-tagged MBOAT7 full length forms, using a combination of Western Blotting, selective membrane permeabilization followed by indirect immunofluorescence. All together, these data revealed that MBOAT7 is a multispanning transmembrane protein with six transmembrane domains. Based on our model, the predicted catalytic dyad of the protein, composed of the conserved asparagine in position 321 (Asn-321) and the preserved histidine in position 356 (His-356), has a lumenal localization. These data are compatible with the role of MBOAT7 in remodeling the acyl chain composition of endomembranes

    New Diagnostic and Prognostic Models for the Development of Alcoholic Cirrhosis Based on Genetic Predisposition and Alcohol History

    Get PDF
    Liver cirrhosis development is a multifactorial process resulting from a combination of environmental and genetic factors. The aim of the study was to develop accurate non-invasive diagnostic and prognostic models for alcoholic cirrhosis. Consecutive subjects with at-risk alcohol intake were retrospectively enrolled (110 cirrhotic patients and 411 non-cirrhotics). At enrollment, the data about lifetime drinking history were collected and all patients were tested for Patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409, Transmembrane 6 Superfamily 2 (TM6SF2) rs58542926, and hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) rs72613567 variants. In cross-sectional analyses, models for the diagnosis of cirrhosis were developed using multivariate logistic regression. A predictive score for cirrhosis development over 24 years was built by evaluating time-dependent AUC curves. The best diagnostic accuracy was demonstrated by the model, which also includes daily alcohol consumption, duration of hazardous alcohol use, and genetic variants, with AUCs of 0.951 (95% CI 0.925–0.977) and 0.887 (95% CI 0.925–0.977) for cirrhosis and compensated cirrhosis, respectively. The predictive model for future cirrhosis development (AUC of 0.836 95% CI: 0.769–0.904) accounted for age at onset of at-risk alcohol consumption and the number of PNPLA3 and HSD17B13 variant alleles. We have developed accurate genetic and alcohol consumption models for the diagnosis of alcoholic cirrhosis and the prediction of its future risk

    Effects of TM6SF2 E167K on hepatic lipid and very low-density lipoprotein metabolism in humans

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation. The transmembrane 6 superfamily member 2 (TM6SF2) E167K genetic variant associates with NAFLD and with reduced plasma triglyceride levels in humans. However, the molecular mechanisms underlying these associations remain unclear. We hypothesized that TM65F2 E167K affects hepatic very low-density lipoprotein (VLDL) secretion and studied the kinetics of apolipoprotein 13100 (apoB100) and triglyceride metabolism in VLDL in homozygous subjects. In 10 homozygote TM6SF2 E167K carriers and 10 matched controls, we employed stable-isotope tracer and compartmental modeling techniques to determine apoB100 and triglyceride kinetics in the 2 major VIOL subtractions: large triglyceride-rich VLDL, and smaller, less triglyceride-rich VLDL2. VLDL1-apoB100 production was markedly reduced in homozygote TM6SF2 E167K carriers compared with controls. Likewise. VLDL,-triglyceride production was 35% lower in the TMSSF2 E167K carriers. In contrast, the direct production rates for VLDL2 apo13100 and triglyceride were not different between carriers and controls. In conclusion, the TM6SF2 E167K genetic variant was linked to a specific reduction in hepatic secretion of large triglyceride-rich VLDL1. The impaired secretion of VLDL1 explains the reduced plasma triglyceride concentration and provides a basis for understanding the lower risk of cardiovascular disease associated with the TM6SF2 E167K genetic variant.Peer reviewe

    Effects of PNPLA3 I148M on hepatic lipid and very-low-density lipoprotein metabolism in humans

    Get PDF
    Background The phospholipase domain-containing 3 gene (PNPLA3)-148M variant is associated with liver steatosis but its influence on the metabolism of triglyceride-rich lipoproteins remains unclear. Here, we investigated the kinetics of large, triglyceride-rich very-low-density lipoprotein (VLDL), (VLDL1), and smaller VLDL2 in homozygotes for the PNPLA3-148M variant. Methods and results The kinetics of apolipoprotein (apo) B100 (apoB100) and triglyceride in VLDL subfractions were analysed in nine subjects homozygous for PNPLA3-148M and nine subjects homozygous for PNPLA3-148I (controls). Liver fat was >3-fold higher in the 148M subjects. Production rates for apoB100 and triglyceride in VLDL1 did not differ significantly between the two groups. Likewise, production rates for VLDL2-apoB100 and -triglyceride, and fractional clearance rates for both apoB100 and triglyceride in VLDL1 and VLDL2, were not significantly different. Conclusions Despite the higher liver fat content in PNPLA3 148M homozygotes, there was no increase in VLDL production. Equally, VLDL production was maintained at normal levels despite the putative impairment in cytosolic lipid hydrolysis in these subjects.Peer reviewe

    Exome-Wide Association Study on Alanine Aminotransferase Identifies Sequence Variants in the GPAM and APOE Associated With Fatty Liver Disease

    Get PDF
    BACKGROUND & AIMS: Fatty liver disease (FLD) is a growing epidemic that is expected to be the leading cause of end-stage liver disease within the next decade. Both environmental and genetic factors contribute to the susceptibility of FLD. Several genetic variants contributing to FLD have been identified in exome-wide association studies. However, there is still a missing hereditability indicating that other genetic variants are yet to be discovered. METHODS: To find genes involved in FLD, we first examined the association of missense and nonsense variants with alanine amino transferase at an exome-wide level in 425,671 participants from the UK Biobank. We then validated genetic variants with liver fat content in 8930 participants in whom liver fat measurement was available, and replicated 2 genetic variants in 3 independent cohorts comprising 2621 individuals with available liver biopsy. RESULTS: We identified 190 genetic variants independently associated with alanine aminotransferase after correcting for multiple testing with Bonferroni method. The majority of these variants were not previously associated with this trait. Among those associated, there was a striking enrichment of genetic variants influencing lipid metabolism. We identified the variants rs2792751 in GPAM/GPAT1, the gene encoding glycerol-3phosphate acyltransferase, mitochondrial, and rs429358 in APOE, the gene encoding apolipoprotein E, as robustly associated with liver fat content and liver disease after adjusting for multiple testing. Both genes affect lipid metabolism in the liver. CONCLUSIONS: We identified 2 novel genetic variants in GPAM and APOE that are robustly associated with steatosis and liver damage. These findings may help to better elucidate the genetic susceptibility to FLD onset and progression.Peer reviewe

    IL32 downregulation lowers triglycerides and type I collagen in di-lineage human primary liver organoids

    Get PDF
    Steatotic liver disease (SLD) prevails as the most common chronic liver disease yet lack approved treatments due to incomplete understanding of pathogenesis. Recently, elevated hepatic and circulating interleukin 32 (IL -32) levels were found in individuals with severe SLD. However, the mechanistic link between IL -32 and intracellular triglyceride metabolism remains to be elucidated. We demonstrate in vitro that incubation with IL -32b protein leads to an increase in intracellular triglyceride synthesis, while downregulation of IL32 by small interfering RNA leads to lower triglyceride synthesis and secretion in organoids from human primary hepatocytes. This reduction requires the upregulation of Phospholipase A2 group IIA (PLA2G2A). Furthermore, downregulation of IL32 results in lower intracellular type I collagen levels in di -lineage human primary hepatic organoids. Finally, we identify a genetic variant of IL32 (rs76580947) associated with lower circulating IL -32 and protection against SLD measured by non-invasive tests. These data suggest that IL32 downregulation may be beneficial against SLD

    An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans

    Get PDF
    A carbohydrate-restricted diet is a widely recommended intervention for non-alcoholic fatty liver disease (NAFLD), but a systematic perspective on the multiple benefits of this diet is lacking. Here, we performed a short-term intervention with an isocaloric low-carbohydrate diet with increased protein content in obese subjects with NAFLD and characterized the resulting alterations in metabolism and the gut microbiota using a multi-omics approach. We observed rapid and dramatic reductions of liver fat and other cardiometabolic risk factors paralleled by (1) marked decreases in hepatic de novo lipogenesis; (2) large increases in serum beta-hydroxybutyrate concentrations, reflecting increased mitochondrial beta-oxidation; and (3) rapid increases in folate-producing Streptococcus and serum folate concentrations. Liver transcriptomic analysis on biopsy samples from a second cohort revealed downregulation of the fatty acid synthesis pathway and upregulation of folate-mediated one-carbon metabolism and fatty acid oxidation pathways. Our results highlight the potential of exploring diet-microbiota interactions for treating NAFLD.Peer reviewe

    PSD3 downregulation confers protection against fatty liver disease

    Get PDF
    Fatty liver disease (FLD) is a growing health issue with burdening unmet clinical needs. FLD has a genetic component but, despite the common variants already identified, there is still a missing heritability component. Using a candidate gene approach, we identify a locus (rs71519934) at the Pleckstrin and Sec7 domain-containing 3 (PSD3) gene resulting in a leucine to threonine substitution at position 186 of the protein (L186T) that reduces susceptibility to the entire spectrum of FLD in individuals at risk. PSD3 downregulation by short interfering RNA reduces intracellular lipid content in primary human hepatocytes cultured in two and three dimensions, and in human and rodent hepatoma cells. Consistent with this, Psd3 downregulation by antisense oligonucleotides in vivo protects against FLD in mice fed a non-alcoholic steatohepatitis-inducing diet. Thus, translating these results to humans, PSD3 downregulation might be a future therapeutic option for treating FLD. Employing a candidate gene approach, Mancina et al. identify a genetic variant of the Pleckstrin and Sec7 domain-containing 3 (PSD3) gene that reduces susceptibility to fatty liver disease. Functional studies in vitro and in vivo demonstrate that targeting PSD3 protects against fatty liver disease.Peer reviewe
    corecore