75 research outputs found

    Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7

    Get PDF
    This paper describes the scientific and structural updates to the latest release of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7 (v4.7) and points the reader to additional resources for further details. The model updates were evaluated relative to observations and results from previous model versions in a series of simulations conducted to incrementally assess the effect of each change. The focus of this paper is on five major scientific upgrades: (a) updates to the heterogeneous N<sub>2</sub>O<sub>5</sub> parameterization, (b) improvement in the treatment of secondary organic aerosol (SOA), (c) inclusion of dynamic mass transfer for coarse-mode aerosol, (d) revisions to the cloud model, and (e) new options for the calculation of photolysis rates. Incremental test simulations over the eastern United States during January and August 2006 are evaluated to assess the model response to each scientific improvement, providing explanations of differences in results between v4.7 and previously released CMAQ model versions. Particulate sulfate predictions are improved across all monitoring networks during both seasons due to cloud module updates. Numerous updates to the SOA module improve the simulation of seasonal variability and decrease the bias in organic carbon predictions at urban sites in the winter. Bias in the total mass of fine particulate matter (PM<sub>2.5</sub>) is dominated by overpredictions of unspeciated PM<sub>2.5</sub> (PM<sub>other</sub>) in the winter and by underpredictions of carbon in the summer. The CMAQv4.7 model results show slightly worse performance for ozone predictions. However, changes to the meteorological inputs are found to have a much greater impact on ozone predictions compared to changes to the CMAQ modules described here. Model updates had little effect on existing biases in wet deposition predictions

    Does agri-environmental management enhance biodiversity and multiple ecosystem services?: A farm-scale experiment

    Get PDF
    Agri-environmental management has been promoted as an approach to enhance delivery of multiple ecosystem services. Most agri-environment agreements include several actions that the farmer agrees to put in place. But, most studies have only considered how individual agri-environmental actions affect particular ecosystem services. Thus, there is little understanding of how the range of agri-environmental actions available to a farmer might be deployed on any individual farm to enhance multiple services. To address this knowledge gap, we carried out an experimental study in which we deployed a set of agri-environmental actions on a commercial farm in southern England. Agri-environmental actions comprised wildflower margins and fallow areas in arable fields, creating and enhancing grassland with wildflowers, and digging ponds. Alongside biodiversity responses, we measured effects on a number of ecosystem services: pollination, pest control, crop and forage yield, water quality, climate regulation and cultural services. Wildflower margins enhanced invertebrates, pest control and crop yield, and aesthetic appeal. A greater number of pollinators was linked to enhanced oilseed rape yield. But these margins and the fallows did not prevent run-off of nutrients and sediment into waterways, and showed limited carbon sequestration or reduction of greenhouse gas emissions. Newly-dug ponds captured large amounts of sediment and provided aesthetic appeal. Grasslands had higher soil carbon content and microbial biomass, lower N20 emissions, and net sequestration of carbon compared to arable land. Enhancement of grassland plant diversity increased forage quality and aesthetic appeal. Visitors and residents valued a range of agri-environmental features and biodiversity across the farm. Our findings suggest one cannot necessarily expect any particular agri-environmental action will enhance all of a hoped-for set of ecosystem services in any particular setting. A bet-hedging strategy would be for farmers to apply a suite of options to deliver a range of ecosystem service benefits, rather than assuming that one or two options will work as catch-all solutions

    In Vivo Electroporation Enhances the Immunogenicity of an HIV-1 DNA Vaccine Candidate in Healthy Volunteers

    Get PDF
    DNA-based vaccines have been safe but weakly immunogenic in humans to date.We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP) in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines.This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate.ClinicalTrials.gov NCT00545987

    The status of the world's land and marine mammals: diversity, threat, and knowledge

    Get PDF
    Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action

    Determination of the UK37 index in geological samples

    No full text
    • …
    corecore