14 research outputs found

    Molecular Insights Into Binding and Activation of the Human KCNQ2 Channel by Retigabine

    Get PDF
    Voltage-gated potassium channels of the Kv7.x family are involved in a plethora of biological processes across many tissues in animals, and their misfunctioning could lead to several pathologies ranging from diseases caused by neuronal hyperexcitability, such as epilepsy, or traumatic injuries and painful diabetic neuropathy to autoimmune disorders. Among the members of this family, the Kv7.2 channel can form hetero-tetramers together with Kv7.3, forming the so-called M-channels, which are primary regulators of intrinsic electrical properties of neurons and of their responsiveness to synaptic inputs. Here, prompted by the similarity between the M-current and that in Kv7.2 alone, we perform a computational-based characterization of this channel in its different conformational states and in complex with the modulator retigabine. After validation of the structural models of the channel by comparison with experimental data, we investigate the effect of retigabine binding on the two extreme states of Kv7.2 (resting-closed and activated-open). Our results suggest that binding, so far structurally characterized only in the intermediate activated-closed state, is possible also in the other two functional states. Moreover, we show that some effects of this binding, such as increased flexibility of voltage sensing domains and propensity of the pore for open conformations, are virtually independent on the conformational state of the protein. Overall, our results provide new structural and dynamic insights into the functioning and the modulation of Kv7.2 and related channels

    The mood stabilizing properties of AF3581, a novel potent GSK-3β inhibitor

    Get PDF
    Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzymeand highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients

    Structure-Based Discovery of 1<i>H</i>‑Indazole-3-carboxamides as a Novel Structural Class of Human GSK‑3 Inhibitors

    No full text
    An in silico screening procedure was performed to select new inhibitors of glycogen synthase kinase 3β (GSK-3β), a serine/threonine protein kinase that in the last two decades has emerged as a key target in drug discovery, having been implicated in multiple cellular processes and linked with the pathogenesis of several diseases. GSK-3β inhibitors might prove useful as therapeutic compounds in the treatment of conditions associated with elevated levels of enzyme activity, such as type-2 diabetes and neurological disorders, for example, Alzheimer’s disease, bipolar disorder, neuronal cell death, stroke, and depression. In this work, virtual screening studies were applied to proprietary compound libraries, and the functional activities of selected compounds were assayed on human GSK-3β. The in silico screening procedure enabled the identification of eight hit compounds showing pIC<sub>50</sub> values ranging from 4.9 to 5.5. X-ray crystallographic studies resulted in a 2.50 Å three-dimensional structure of GSK-3β complexed with one of the selected compounds, confirming that the inhibitor interacts with the enzyme according to the docking hypothesis. Importantly, molecular docking was able to find a new chemical scaffold for GSK-3β inhibition, providing grounds for rational structure-based design aimed at further optimization of the initial hits

    Discovery of Novel Imidazopyridine GSK-3β Inhibitors Supported by Computational Approaches

    No full text
    The interest of research groups and pharmaceutical companies to discover novel GSK-3&beta; inhibitors has increased over the years considering the involvement of this enzyme in many pathophysiological processes and diseases. Along this line, we recently reported on 1H-indazole-3-carboxamide (INDZ) derivatives 1&ndash;6, showing good GSK-3&beta; inhibition activity. However, they suffered from generally poor central nervous system (CNS) permeability. Here, we describe the design, synthesis, and in vitro characterization of novel imidazo[1,5-a]pyridine-1-carboxamide (IMID 1) and imidazo[1,5-a]pyridine-3-carboxamide (IMID 2) compounds (7&ndash;18) to overcome such liability. In detail, structure-based approaches and fine-tuning of physicochemical properties guided the design of derivatives 7&ndash;18 resulting in ameliorated absorption, distribution, metabolism, and excretion (ADME) properties. A crystal structure of 16 in complex with GSK-3&beta; enzyme (PDB entry 6Y9S) confirmed the in silico models. Despite the nanomolar inhibition activity, the new core compounds showed a reduction in potency with respect to INDZ derivatives 1&ndash;6. In this context, Molecular Dynamics (MD) and Quantum Mechanics (QM) based approaches along with NMR investigation helped to rationalize the observed structure activity relationship (SAR). With these findings, the key role of the acidic hydrogen of the central core for a tight interaction within the ATP pocket of the enzyme reflecting in good GSK-3&beta; affinity was demonstrated

    Molecular Insights Into Binding and Activation of the Human KCNQ2 Channel by Retigabine

    Get PDF
    Voltage-gated potassium channels of the Kv7.x family are involved in a plethora of biological processes across many tissues in animals, and their misfunctioning could lead to several pathologies ranging from diseases caused by neuronal hyperexcitability, such as epilepsy, or traumatic injuries and painful diabetic neuropathy to autoimmune disorders. Among the members of this family, the Kv7.2 channel can form hetero-tetramers together with Kv7.3, forming the so-called M-channels, which are primary regulators of intrinsic electrical properties of neurons and of their responsiveness to synaptic inputs. Here, prompted by the similarity between the M-current and that in Kv7.2 alone, we perform a computational-based characterization of this channel in its different conformational states and in complex with the modulator retigabine. After validation of the structural models of the channel by comparison with experimental data, we investigate the effect of retigabine binding on the two extreme states of Kv7.2 (resting-closed and activated-open). Our results suggest that binding, so far structurally characterized only in the intermediate activated-closed state, is possible also in the other two functional states. Moreover, we show that some effects of this binding, such as increased flexibility of voltage sensing domains and propensity of the pore for open conformations, are virtually independent on the conformational state of the protein. Overall, our results provide new structural and dynamic insights into the functioning and the modulation of Kv7.2 and related channels

    Molecular Insights Into Binding and Activation of the Human KCNQ2 Channel by Retigabine

    No full text
    Voltage-gated potassium channels of the Kv7.x family are involved in a plethora of biological processes across many tissues in animals, and their misfunctioning could lead to several pathologies ranging from diseases caused by neuronal hyperexcitability, such as epilepsy, or traumatic injuries and painful diabetic neuropathy to autoimmune disorders. Among the members of this family, the Kv7.2 channel can form hetero-tetramers together with Kv7.3, forming the so-called M-channels, which are primary regulators of intrinsic electrical properties of neurons and of their responsiveness to synaptic inputs. Here, prompted by the similarity between the M-current and that in Kv7.2 alone, we perform a computational-based characterization of this channel in its different conformational states and in complex with the modulator retigabine. After validation of the structural models of the channel by comparison with experimental data, we investigate the effect of retigabine binding on the two extreme states of Kv7.2 (resting-closed and activated-open). Our results suggest that binding, so far structurally characterized only in the intermediate activated-closed state, is possible also in the other two functional states. Moreover, we show that some effects of this binding, such as increased flexibility of voltage sensing domains and propensity of the pore for open conformations, are virtually independent on the conformational state of the protein. Overall, our results provide new structural and dynamic insights into the functioning and the modulation of Kv7.2 and related channels

    Molecular basis for the different interactions of congeneric substrates with the polyspecific transporter AcrB

    No full text
    The drug/proton antiporter AcrB, which is part of the major efflux pump AcrABZ-TolC in Escherichia coli, is the paradigm transporter of the resistance-nodulation-cell division (RND) superfamily. Despite the impressive ability of AcrB to transport many chemically unrelated compounds, only a few of these ligands have been co-crystallized with the protein. Therefore, the molecular features that distinguish good substrates of the pump from poor ones have remained poorly understood to date. In this work, a thorough in silico protocol was employed to study the interactions of a series of congeneric compounds with AcrB to examine how subtle chemical differences affect the recognition and transport of substrates by this protein. Our analysis allowed us to discriminate among different compounds, mainly in terms of specific interactions with diverse sub-sites within the large distal pocket of AcrB. Our findings could provide valuable information for the design of new antibiotics that can evade the antimicrobial resistance mediated by efflux pump machinery

    Antibacterial activity of novel dual bacterial DNA type II topoisomerase inhibitors.

    No full text
    In this study, a drug discovery programme that sought to identify novel dual bacterial topoisomerase II inhibitors (NBTIs) led to the selection of six optimized compounds. In enzymatic assays, the molecules showed equivalent dual-targeting activity against the DNA gyrase and topoisomerase IV enzymes of Staphylococcus aureus and Escherichia coli. Consistently, the compounds demonstrated potent activity in susceptibility tests against various Gram-positive and Gram-negative reference species, including ciprofloxacin-resistant strains. The activity of the compounds against clinical multidrug-resistant isolates of S. aureus, Clostridium difficile, Acinetobacter baumannii, Neisseria gonorrhoeae, E. coli and vancomycin-resistant Enterococcus spp. was also confirmed. Two compounds (1 and 2) were tested in time-kill and post-antibiotic effect (PAE) assays. Compound 1 was bactericidal against all tested reference strains and showed higher activity than ciprofloxacin, and compound 2 showed a prolonged PAE, even against the ciprofloxacin-resistant S. aureus BAA-1720 strain. Spontaneous development of resistance to both compounds was selected for in S. aureus at frequencies comparable to those obtained for quinolones and other NBTIs. S. aureus BAA-1720 mutants resistant to compounds 1 and 2 had single point mutations in gyrA or gyrB outside of the quinolone resistance-determining region (QRDR), confirming the distinct site of action of these NBTIs compared to that of quinolones. Overall, the very good antibacterial activity of the compounds and their optimizable in vitro safety and physicochemical profile may have relevant implications for the development of new broad-spectrum antibiotics

    Discovery and Pharmacological Profile of New 1H‑Indazole-3- carboxamide and 2H‑Pyrrolo[3,4‑c]quinoline Derivatives as SelectiveSerotonin 4 Receptor Ligands

    No full text
    Since the discovery of the serotonin 4 receptor (5-HT4R), a large number of receptor ligands have been studied. The safety concerns and the lack of market success of these ligands have mainly been attributed to their lack of selectivity. In this study we describe the discovery of N-[(4- piperidinyl)methyl]-1H-indazole-3-carboxamide and 4-[(4- piperidinyl)methoxy]-2H-pyrrolo[3,4-c]quinoline derivatives as new 5-HT4R ligands endowed with high selectivity over the serotonin 2A receptor and human ether-a-go-go-related gene potassium ion channel. Within these series, two molecules (11ab and 12g) were identified as potent and selective 5-HT4R antagonists with good in vitro pharmacokinetic properties. These compounds were evaluated for their antinociceptive action in two analgesia animal models. 12g showed a significant antinociceptive effect in both models and is proposed as an interesting lead compound as a 5-HT4R antagonist withanalgesic action

    Hit Optimization of 5‑Substituted‑<i>N</i>‑(piperidin-4-ylmethyl)‑1<i>H</i>‑indazole-3-carboxamides: Potent Glycogen Synthase Kinase‑3 (GSK-3) Inhibitors with in Vivo Activity in Model of Mood Disorders

    No full text
    Novel treatments for bipolar disorder with improved efficacy and broader spectrum of activity are urgently needed. Glycogen synthase kinase 3β (GSK-3β) has been suggested to be a key player in the pathophysiology of bipolar disorder. A series of novel GSK-3β inhibitors having the common <i>N</i>-[(1-alkylpiperidin-4-yl)­methyl]-1<i>H</i>-indazole-3-carboxamide scaffold were prepared taking advantage of an X-ray cocrystal structure of compound <b>5</b> with GSK-3β. We probed different substitutions at the indazole 5-position and at the piperidine-nitrogen to obtain potent ATP-competitive GSK-3β inhibitors with good cell activity. Among the compounds assessed in the <i>in vivo</i> PK experiments, <b>14i</b> showed, after i.p. dosing, encouraging plasma PK profile and brain exposure, as well as efficacy in a mouse model of mania. Compound <b>14i</b> was selected for further <i>in vitro</i>/<i>in vivo</i> pharmacological evaluation, in order to elucidate the use of ATP-competitive GSK-3β inhibitors as new tools in the development of new treatments for mood disorders
    corecore