43,266 research outputs found
Spectral Variations in Early-Type Galaxies as a Function of Mass
We report on the strengths of three spectral indicators - Mg_2, Hbeta, and
Hn/Fe - in the integrated light of a sample of 100 field and cluster E/S0
galaxies. The measured indices are sensitive to age and/or and metallicity
variations within the galaxy sample. Using linear regression analysis for data
with non-uniform errors, we determine the intrinsic scatter present among the
spectral indices of our galaxy sample as a function of internal velocity
dispersion. Our analysis indicates that there is significantly more intrinsic
scatter in the two Balmer line indices than in the Mg_2 index, indicating that
the Balmer indices provide more dynamic range in determining the age of a
stellar population than does the Mg_2 index. Furthermore, the scatter is much
larger for the low velocity dispersion galaxies, indicating that star formation
has occurred more recently in the lower mass galaxies.Comment: 4 pages, 1 figure, 1 table, to appear in the Astrophysical Journal
Letter
Summary of all cycle II.5 shear and boundary layer measurements, aerodynamics
The two measurement systems were used to measure mean velocity and velocity, mass flux, and total temperature fluctuations in the turbulent boundary on the fuselage of a KC-135 aircraft. The boundary layer thickness ranged between about 20 and 30 cm for the range of flight Mach numbers from about 0.25 to 0.85 and Reynolds numbers between 3 and 6 x 10 to the 6th power/m. The adaptation of each system for use in airborne applications is discussed. The data obtained from each system are given and compared with each other and they indicate that the two systems represent viable ones for use in future airborne turbulence experiments
Conformal Anomalies and the Gravitational Effective Action: The Correlator for a Dirac Fermion
We compute in linearized gravity all the contributions to the gravitational
effective action due to a virtual Dirac fermion, related to the conformal
anomaly. This requires, in perturbation theory, the identification of the
gauge-gauge-graviton vertex off mass shell, involving the correlator of the
energy-momentum tensor and two vector currents (), which is responsible
for the generation of the gauge contributions to the conformal anomaly in
gravity. We also present the anomalous effective action in the inverse mass of
the fermion as in the Euler-Heisenberg case.Comment: 47 pages, 1 figure. Revised final version, contains 1 additional
section. Accepted for pubblication on Phys. Rev.
What Have We Learned from Policy Transfer Research? Dolowitz and Marsh Revisited
Over the last decade, policy transfer has emerged as an important concept within public policy analysis, guiding both theoretical and empirical research spanning many venues and issue areas. Using Dolowitz and Marsh's 1996 stocktake as its starting point, this article reviews what has been learned by whom and for what purpose. It finds that the literature has evolved from its rather narrow, state-centred roots to cover many more actors and venues. While policy transfer still represents a niche topic for some researchers, an increasing number have successfully assimilated it into wider debates on topics such as globalisation, Europeanisation and policy innovation. This article assesses the concept's position in the overall ‘tool-kit’ of policy analysis, examines some possible future directions and reflects on their associated risks and opportunities
Measured and predicted pressure distributions on the AFTI/F-111 mission adaptive wing
Flight tests have been conducted using an F-111 aircraft modified with a mission adaptive wing (MAW). The MAW has variable-camber leading and trailing edge surfaces that can change the wing camber in flight, while preserving smooth upper surface contours. This paper contains wing surface pressure measurements obtained during flight tests at Dryden Flight Research Facility of NASA Ames Research Center. Upper and lower surface steady pressure distributions were measured along four streamwise rows of static pressure orifices on the right wing for a leading-edge sweep angle of 26 deg. The airplane, wing, instrumentation, and test conditions are discussed. Steady pressure results are presented for selected wing camber deflections flown at subsonic Mach numbers up to 0.90 and an angle-of-attack range of 5 to 12 deg. The Reynolds number was 26 million, based on the mean aerodynamic chord. The MAW flight data are compared to MAW wind tunnel data, transonic aircraft technology (TACT) flight data, and predicted pressure distributions. The results provide a unique database for a smooth, variable-camber, advanced supercritical wing
Spin Coherence and N ESEEM Effects of Nitrogen-Vacancy Centers in Diamond with X-band Pulsed ESR
Pulsed ESR experiments are reported for ensembles of negatively-charged
nitrogen-vacancy centers (NV) in diamonds at X-band magnetic fields
(280-400 mT) and low temperatures (2-70 K). The NV centers in synthetic
type IIb diamonds (nitrogen impurity concentration ~ppm) are prepared with
bulk concentrations of cm to cm
by high-energy electron irradiation and subsequent annealing. We find that a
proper post-radiation anneal (1000C for 60 mins) is critically
important to repair the radiation damage and to recover long electron spin
coherence times for NVs. After the annealing, spin coherence times of T~ms at 5~K are achieved, being only limited by C nuclear spectral
diffusion in natural abundance diamonds. At X-band magnetic fields, strong
electron spin echo envelope modulation (ESEEM) is observed originating from the
central N nucleus. The ESEEM spectral analysis allows for accurate
determination of the N nuclear hypefine and quadrupole tensors. In
addition, the ESEEM effects from two proximal C sites (second-nearest
neighbor and fourth-nearest neighbor) are resolved and the respective C
hyperfine coupling constants are extracted.Comment: 10 pages, 5 figure
A simple description of the states and in
A sixth-order quadrupole boson Hamiltonian is used to describe 26 states
and 67 states which have been recently identified in .
Two closed expressions are alternatively used for energy levels. One
corresponds to a semi-classical approach while the other one represents the
exact eigenvalue of the model Hamiltonian. The semi-classical expression
involves four parameters, while the exact eigenvalue is determined by five
parameters. In each of the two descriptions a least square fit procedure is
adopted.
Both expressions provide a surprisingly good agreement with the experimental
data.Comment: 9 pages, 5 figure
Vlasov simulation in multiple spatial dimensions
A long-standing challenge encountered in modeling plasma dynamics is
achieving practical Vlasov equation simulation in multiple spatial dimensions
over large length and time scales. While direct multi-dimension Vlasov
simulation methods using adaptive mesh methods [J. W. Banks et al., Physics of
Plasmas 18, no. 5 (2011): 052102; B. I. Cohen et al., November 10, 2010,
http://meetings.aps.org/link/BAPS.2010.DPP.NP9.142] have recently shown
promising results, in this paper we present an alternative, the Vlasov Multi
Dimensional (VMD) model, that is specifically designed to take advantage of
solution properties in regimes when plasma waves are confined to a narrow cone,
as may be the case for stimulated Raman scatter in large optic f# laser beams.
Perpendicular grid spacing large compared to a Debye length is then possible
without instability, enabling an order 10 decrease in required computational
resources compared to standard particle in cell (PIC) methods in 2D, with
another reduction of that order in 3D. Further advantage compared to PIC
methods accrues in regimes where particle noise is an issue. VMD and PIC
results in a 2D model of localized Langmuir waves are in qualitative agreement
HST and Spitzer point source detection and optical extinction in powerful narrow-line radio galaxies
We present the analysis of infrared HST and Spitzer data for a sample of 13
FRII radio galaxies at 0.03<z<0.11 that are classified as narrow-line radio
galaxies (NLRG). In the context of the unified schemes for active galactic
nuclei (AGN), our direct view of the AGN in NLRG is impeded by a parsec-scale
dusty torus structure. Our high resolution infrared observations provide new
information about the degree of extinction induced by the torus, and the
incidence of obscured AGN in NLRG.
We find that the point-like nucleus detection rate increases from 25 per cent
at 1.025m, to 80 per cent at 2.05m, and to 100 per cent at 8.0m.
This supports the idea that most NLRG host an obscured AGN in their centre. We
estimate the extinction from the obscuring structures using X-ray, near-IR and
mid-IR data. We find that the optical extinction derived from the 9.7m
silicate absorption feature is consistently lower than the extinction derived
using other techniques. This discrepancy challenges the assumption that all the
mid-infrared emission of NLRG is extinguished by a simple screen of dust at
larger radii. This disagreement can be explained in terms of either weakening
of the silicate absorption feature by (i) thermal mid-IR emission from the
narrow-line region, (ii) non-thermal emission from the base of the radio jets,
or (iii) by direct warm dust emission that leaks through a clumpy torus without
suffering major attenuation.Comment: 18 pages, 7 figures, 8 tables, accepted for publication in MNRA
- …