2,819 research outputs found

    Analysis of a power plant investment opportunity under a carbon neutral world

    Get PDF

    VPSIRR (Vulnerability - Pressure - State - Impact - Risk And Response): An Approach To Determine The Condition Of Estuaries And To Assess Where Management Responses Are

    Get PDF
    Estuaries are highly variable in terms of type and geomorphic classification. The condition of these systems is often a reflection of activities taking place in their catchments and the susceptibility of these systems to each particular pressure. Effective management intervention can be achieved when there is an understanding of the current condition of the estuary or component of the estuary and of the pressures likely to affect them. If this can be linked to the susceptibility of the estuary to the pressure (risk), the management activity can be prioritised. A framework based on the Pressure-State-Impact-Response model, but which also includes the vulnerability of the system to each of the pressures has been developed. A key feature of this framework is that the links between indicators of pressure, state and impact are clearly identified ensuring that only indicators relevant to the local situation are selected. In addition, a risk assessment process has been developed. This approach is called a VPSIRR (Vulnerability - Pressure - State - Impact - Risk - Response)approach. Application of this method increases the likelihood of being able to identify the causes of any observed changes in condition, making it easier to identify appropriate management actions. It also enables information to be provided to the community in a user-friendly manner. We have developed a user friendly computer package which enables the risk that each estuary is under from various pressures to be assessed and linked to condition. The package enables the certainty about various data used to inform the process, to be reported. Importantly, the package enables indicator information to be updated as better information becomes available. It also enables new indicator information to be incorporated into the software should better knowledge become available. This component would only be made available to software administrators. The package produces a colour coded and numeric report card comprising of 5 colours or numbers which is designed to be easily understood and interpreted by users from a variety of backgrounds. The software can be used to inform managers of where to focus management investment, but can also be used to educate people about natural resource issues and the implications of different catchment and estuary based activities. Fact sheets imbedded within the software provide details about the various indicators. These include how to collect data and where necessary, how to analyse them in order to use the software. The fact sheets also provide information on management responses to a variety of issues

    A flexible mixed model for age-dependent performance: application to golf

    Get PDF
    We present a new mixed linear model for the relationship between age and performance. The model allows for random effects at the nodes of a barycentric interpolation, such that performance evolves with age in a non-prescriptive way. We use the model to investigate the effects of age on performance in golf and find that performance peaks in the 30s and then declines after that. We disaggregate performance into its constituent components and find that driving, which tends to require power and speed, deteriorates consistently from the early 20s, whilst putting, which requires touch and finesse, remains strong until the late 40s. Our model can be used in other settings, and requires only that measures of performance exist

    Creation of a trajectory framework that could be sustainable for a continuous exploration of Mars and its moons

    Get PDF
    As humanity looks to the Cislunar region in recent space flight operations, the question remains: where will technology advance next? Mars is of particular interest with both the public and private sector aiming to get humans on the planet in the coming decades. Investigating stable trajectories in the Mars-Phobos-Deimos system for telecommunications and observation is the next step in developing future mission plans. Innovations in orbital mechanics must be considered, neither the Two Body Problem (2BP) nor the Circular Restricted Three Body Problem (CR3BP) are sufficient to effectively model satellite motion. Instead, in similar fashion to the patched-conics solution of transfers between the influence of celestial bodies, a patched CR3BP-2BP-CR3BP method of propagating the orbits is proposed. To begin, assumptions about Deimos and Phobos will be made—co-planar orbits and spherical symmetry to name a few. Once the problem has been successfully modeled, each assumption will be undone methodically to increase modeling accuracy. Impulsive maneuvers will be considered, as well as low, continuous thrust maneuvers. The aim of this project is to develop a robust, sustainable trajectory framework that can be used in future missions

    A computationally engineered RAS rheostat reveals RAS-ERK signaling dynamics.

    Get PDF
    Synthetic protein switches controlled with user-defined inputs are powerful tools for studying and controlling dynamic cellular processes. To date, these approaches have relied primarily on intermolecular regulation. Here we report a computationally guided framework for engineering intramolecular regulation of protein function. We utilize this framework to develop chemically inducible activator of RAS (CIAR), a single-component RAS rheostat that directly activates endogenous RAS in response to a small molecule. Using CIAR, we show that direct RAS activation elicits markedly different RAS-ERK signaling dynamics from growth factor stimulation, and that these dynamics differ among cell types. We also found that the clinically approved RAF inhibitor vemurafenib potently primes cells to respond to direct wild-type RAS activation. These results demonstrate the utility of CIAR for quantitatively interrogating RAS signaling. Finally, we demonstrate the general utility of our approach in design of intramolecularly regulated protein tools by applying it to the Rho family of guanine nucleotide exchange factors

    Structural Transitions and Global Minima of Sodium Chloride Clusters

    Full text link
    In recent experiments on sodium chloride clusters structural transitions between nanocrystals with different cuboidal shapes were detected. Here we determine reaction pathways between the low energy isomers of one of these clusters, (NaCl)35Cl-. The key process in these structural transitions is a highly cooperative rearrangement in which two parts of the nanocrystal slip past one another on a {110} plane in a direction. In this way the nanocrystals can plastically deform, in contrast to the brittle behaviour of bulk sodium chloride crystals at the same temperatures; the nanocrystals have mechanical properties which are a unique feature of their finite size. We also report and compare the global potential energy minima for (NaCl)NCl- using two empirical potentials, and comment on the effect of polarization.Comment: extended version, 13 pages, 8 figures, revte

    The Effect of Interocular Phase Difference on Perceived Contrast

    Get PDF
    Binocular vision is traditionally treated as two processes: the fusion of similar images, and the interocular suppression of dissimilar images (e.g. binocular rivalry). Recent work has demonstrated that interocular suppression is phase-insensitive, whereas binocular summation occurs only when stimuli are in phase. But how do these processes affect our perception of binocular contrast? We measured perceived contrast using a matching paradigm for a wide range of interocular phase offsets (0–180°) and matching contrasts (2–32%). Our results revealed a complex interaction between contrast and interocular phase. At low contrasts, perceived contrast reduced monotonically with increasing phase offset, by up to a factor of 1.6. At higher contrasts the pattern was non-monotonic: perceived contrast was veridical for in-phase and antiphase conditions, and monocular presentation, but increased a little at intermediate phase angles. These findings challenge a recent model in which contrast perception is phase-invariant. The results were predicted by a binocular contrast gain control model. The model involves monocular gain controls with interocular suppression from positive and negative phase channels, followed by summation across eyes and then across space. Importantly, this model—applied to conditions with vertical disparity—has only a single (zero) disparity channel and embodies both fusion and suppression processes within a single framework

    Risk-shifting Through Issuer Liability and Corporate Monitoring

    Get PDF
    This article explores how issuer liability re-allocates fraud risk and how risk allocation may reduce the incidence of fraud. In the US, the apparent absence of individual liability of officeholders and insufficient monitoring by insurers under-mine the potential deterrent effect of securities litigation. The underlying reasons why both mechanisms remain ineffective are collective action problems under the prevailing dispersed ownership structure, which eliminates the incentives to moni-tor set by issuer liability. This article suggests that issuer liability could potentially have a stronger deterrent effect when it shifts risk to individuals or entities holding a larger financial stake. Thus, it would enlist large shareholders in monitoring in much of Europe. The same risk-shifting effect also has implications for the debate about the relationship between securities litigation and creditor interests. Credi-tors’ claims should not be given precedence over claims of defrauded investors (e.g., because of the capital maintenance principle), since bearing some of the fraud risk will more strongly incentivise large creditors, such as banks, to monitor the firm in jurisdictions where corporate debt is relatively concentrated

    Using ordinal logistic regression to evaluate the performance of laser-Doppler predictions of burn-healing time

    Get PDF
    Background Laser-Doppler imaging (LDI) of cutaneous blood flow is beginning to be used by burn surgeons to predict the healing time of burn wounds; predicted healing time is used to determine wound treatment as either dressings or surgery. In this paper, we do a statistical analysis of the performance of the technique. Methods We used data from a study carried out by five burn centers: LDI was done once between days 2 to 5 post burn, and healing was assessed at both 14 days and 21 days post burn. Random-effects ordinal logistic regression and other models such as the continuation ratio model were used to model healing-time as a function of the LDI data, and of demographic and wound history variables. Statistical methods were also used to study the false-color palette, which enables the laser-Doppler imager to be used by clinicians as a decision-support tool. Results Overall performance is that diagnoses are over 90% correct. Related questions addressed were what was the best blood flow summary statistic and whether, given the blood flow measurements, demographic and observational variables had any additional predictive power (age, sex, race, % total body surface area burned (%TBSA), site and cause of burn, day of LDI scan, burn center). It was found that mean laser-Doppler flux over a wound area was the best statistic, and that, given the same mean flux, women recover slightly more slowly than men. Further, the likely degradation in predictive performance on moving to a patient group with larger %TBSA than those in the data sample was studied, and shown to be small. Conclusion Modeling healing time is a complex statistical problem, with random effects due to multiple burn areas per individual, and censoring caused by patients missing hospital visits and undergoing surgery. This analysis applies state-of-the art statistical methods such as the bootstrap and permutation tests to a medical problem of topical interest. New medical findings are that age and %TBSA are not important predictors of healing time when the LDI results are known, whereas gender does influence recovery time, even when blood flow is controlled for. The conclusion regarding the palette is that an optimum three-color palette can be chosen 'automatically', but the optimum choice of a 5-color palette cannot be made solely by optimizing the percentage of correct diagnoses
    • …
    corecore