3,163 research outputs found

    High bat (Chiroptera) diversity in the Early Eocene of India

    Get PDF
    The geographic origin of bats is still unknown, and fossils of earliest bats are rare and poorly diversified, with, maybe, the exception of Europe. The earliest bats are recorded from the Early Eocene of North America, Europe, North Africa and Australia where they seem to appear suddenly and simultaneously. Until now, the oldest record in Asia was from the Middle Eocene. In this paper, we report the discovery of the oldest bat fauna of Asia dating from the Early Eocene of the Cambay Formation at Vastan Lignite Mine in Western India. The fossil taxa are described on the basis of well-preserved fragments of dentaries and lower teeth. The fauna is highly diversified and is represented by seven species belonging to seven genera and at least four families. Two genera and five species are new. Three species exhibit very primitive dental characters, whereas four others indicate more advanced states. Unexpectedly, this fauna presents strong affinities with the European faunas from the French Paris Basin and the German Messel locality. This could result from the limited fossil record of bats in Asia, but could also suggest new palaeobiogeographic scenarios involving the relative position of India during the Early Eocene

    Structural and spectroscopic studies shed light on the mechanism of oxalate oxidase

    Get PDF

    Nanomedicine - nanoparticles, molecular biosensors and targeted gene/drug delivery for combined single-cell diagnostics and therapeutics

    Get PDF
    Next generation nanomedicine technologies are being developed to provide for continuous and linked molecular diagnostics and therapeutics. Research is being performed to develop "sentinel nanoparticles" which will seek out diseased (e.g. cancerous) cells, enter those living cells, and either perform repairs or induce those cells to die through apoptosis. These nanoparticles are envisioned as multifunctional "smart drug delivery systems"

    Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny

    Get PDF
    Phylogenies of mammals based on morphological data continue to show several major areas of conflict with the current consensus view of their relationships, which is based largely on molecular data. This raises doubts as to whether current morphological character sets are able to accurately resolve mammal relationships. We tested this under a hypothetical ‘best case scenario’ by using ancestral state reconstruction (under both maximum parsimony and maximum likelihood) to infer the morphologies of fossil ancestors for all clades present in a recent comprehensive DNA sequencebased phylogeny of mammals, and then seeing what effect the subsequent inclusion of these predicted ancestors had on unconstrained phylogenetic analyses of morphological data. We found that this resulted in topologies that are highly congruent with the current consensus phylogeny, at least when the predicted ancestors are assumed to be well preserved and densely sampled. Most strikingly, several analyses recovered the monophyly of clades that have never been found in previous morphology-only studies, such as Afrotheria and Laurasiatheria. Our results suggest that, at least in principle, improvements in the fossil record—specifically the discovery of fossil taxa that preserve the ancestral or near-ancestral morphologies of the nodes in the current consensus—may be sufficient to largely reconcile morphological and molecular estimates of mammal phylogeny, even using current morphological character set

    Enhancing the potential exploitation of food waste: Extraction, purification, and characterization of renewable specialty chemicals from blackcurrants (Ribes nigrum L.)

    Get PDF
    Natural colorants were extracted from renewable botanical sources, specifically waste epicarp from the blackcurrant fruit pressing industry. A process was developed which used acidified water extraction followed by a solid-phase extraction (SPE) purification stage which allowed the production of an anthocyanin-rich extract in good yields (ca. 2% w/w based on dry weight of raw material). The components in the extracts were extensively characterized by HPLC, mass spectrometry, IR, NMR and UV-Vis spectroscopy. HPLC confirmed presence of four anthocyanins: delphinidin-3-O-rutinoside (45%), cyanidin-3-O-rutinoside (31%) and the corresponding glucosides at 16% and 8%, respectively. On sequential liquid-liquid aqueous-organic partitioning of the post-SPE sample, monomeric anthocyanins (54.7%) and polymeric anthocyanins (18%) were found in the aqueous layer with 3-O-rutinosides of myricetin (3.1%) and quercetin (3.2%), whilst isopropylacetate achieved selective extraction of caffeic acid (3%), p-coumaric acid (5%), and myricetin (2.5%) and quercetin (3.2%) aglycons. 3-O-Glucosides of myricetin (3.1%) and quercetin (2%), along with nigrumin-p-coumarate (1%) and nigrumin ferulate (0.5%) were selectively extracted from the remaining aqueous fraction using ethylacetate. This allowed for near total quantification of the blackcurrant extract composition

    Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer

    Get PDF
    Conceptual models of carcinogenesis typically consist of an evolutionary sequence of heritable changes in genes controlling proliferation, apoptosis, and senescence. We propose that these steps are necessary but not sufficient to produce invasive breast cancer because intraductal tumour growth is also constrained by hypoxia and acidosis that develop as cells proliferate into the lumen and away from the underlying vessels. This requires evolution of glycolytic and acid-resistant phenotypes that, we hypothesise, is critical for emergence of invasive cancer. Mathematical models demonstrate severe hypoxia and acidosis in regions of intraductal tumours more than 100 m from the basement membrane. Subsequent evolution of glycolytic and acid-resistant phenotypes leads to invasive proliferation. Multicellular spheroids recapitulating ductal carcinoma in situ (DCIS) microenvironmental conditions demonstrate upregulated glucose transporter 1 (GLUT1) as adaptation to hypoxia followed by growth into normoxic regions in qualitative agreement with model predictions. Clinical specimens of DCIS exhibit periluminal distribution of GLUT-1 and Na+/H+ exchanger (NHE) indicating transcriptional activation by hypoxia and clusters of the same phenotype in the peripheral, presumably normoxic regions similar to the pattern predicted by the models and observed in spheroids. Upregulated GLUT-1 and NHE-1 were observed in microinvasive foci and adjacent intraductal cells. Adaptation to hypoxia and acidosis may represent key events in transition from in situ to invasive cancer

    Field Inspection of Ceramic Matrix Composites

    Full text link
    Ceramic Matrix Composites (CMCs) are high temperature refractory materials particularly suited to exhaust impinged, signature controlled structures such as those on military aircraft. One of the barriers to their more widespread introduction is the detection of damage in service and the repair of that damage. This work describes a preliminary study of field capable inspection techniques for CMCs.</p

    Risdiplam in Type 1 Spinal Muscular Atrophy

    Get PDF
    BACKGROUND: Type 1 spinal muscular atrophy is a rare, progressive neuromuscular disease that is caused by low levels of functional survival of motor neuron (SMN) protein. Risdiplam is an orally administered, small molecule that modifies SMN2 pre-messenger RNA splicing and increases levels of functional SMN protein. METHODS: We report the results of part 1 of a two-part, phase 2-3, open-label study of risdiplam in infants 1 to 7 months of age who had type 1 spinal muscular atrophy, which is characterized by the infant not attaining the ability to sit without support. Primary outcomes were safety, pharmacokinetics, pharmacodynamics (including the blood SMN protein concentration), and the selection of the risdiplam dose for part 2 of the study. Exploratory outcomes included the ability to sit without support for at least 5 seconds. RESULTS: A total of 21 infants were enrolled. Four infants were in a low-dose cohort and were treated with a final dose at month 12 of 0.08 mg of risdiplam per kilogram of body weight per day, and 17 were in a high-dose cohort and were treated with a final dose at month 12 of 0.2 mg per kilogram per day. The baseline median SMN protein concentrations in blood were 1.31 ng per milliliter in the low-dose cohort and 2.54 ng per milliliter in the high-dose cohort; at 12 months, the median values increased to 3.05 ng per milliliter and 5.66 ng per milliliter, respectively, which represented a median of 3.0 times and 1.9 times the baseline values in the low-dose and high-dose cohorts, respectively. Serious adverse events included pneumonia, respiratory tract infection, and acute respiratory failure. At the time of this publication, 4 infants had died of respiratory complications. Seven infants in the high-dose cohort and no infants in the low-dose cohort were able to sit without support for at least 5 seconds. The higher dose of risdiplam (0.2 mg per kilogram per day) was selected for part 2 of the study. CONCLUSIONS: In infants with type 1 spinal muscular atrophy, treatment with oral risdiplam led to an increased expression of functional SMN protein in the blood. (Funded by F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT02913482.)

    A gene-based SNP resource and linkage map for the copepod Tigriopus californicus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As yet, few genomic resources have been developed in crustaceans. This lack is particularly evident in Copepoda, given the extraordinary numerical abundance, and taxonomic and ecological diversity of this group. <it>Tigriopus californicus </it>is ideally suited to serve as a genetic model copepod and has been the subject of extensive work in environmental stress and reproductive isolation. Accordingly, we set out to develop a broadly-useful panel of genetic markers and to construct a linkage map dense enough for quantitative trait locus detection in an interval mapping framework for <it>T. californicus--</it>a first for copepods.</p> <p>Results</p> <p>One hundred and ninety Single Nucleotide Polymorphisms (SNPs) were used to genotype our mapping population of 250 F<sub>2 </sub>larvae. We were able to construct a linkage map with an average intermarker distance of 1.8 cM, and a maximum intermarker distance of 10.3 cM. All markers were assembled into linkage groups, and the 12 linkage groups corresponded to the 12 known chromosomes of <it>T. californicus</it>. We estimate a total genome size of 401.0 cM, and a total coverage of 73.7%. Seventy five percent of the mapped markers were detected in 9 additional populations of <it>T. californicus</it>. Of available model arthropod genomes, we were able to show more colocalized pairs of homologues between <it>T. californicus </it>and the honeybee <it>Apis mellifera</it>, than expected by chance, suggesting preserved macrosynteny between Hymenoptera and Copepoda.</p> <p>Conclusions</p> <p>Our study provides an abundance of linked markers spanning all chromosomes. Many of these markers are also found in multiple populations of <it>T. californicus</it>, and in two other species in the genus. The genomic resource we have developed will enable mapping throughout the geographical range of this species and in closely related species. This linkage map will facilitate genome sequencing, mapping and assembly in an ecologically and taxonomically interesting group for which genomic resources are currently under development.</p
    • 

    corecore