1,348 research outputs found

    Annual and interannual variations of Earth-emitted radiation based on a 10-year data set

    Get PDF
    The method of empirical orthogonal functions (EOF) was applied to a 10-year data set of outgoing longwave radiation. Spherical harmonic functions are used as a basis set for producing equal area map results. The following findings are noted. The first EOF accounts for 66 percent of the variance. After that, each EOF accounts for only a small variance, forming a slowly converging series. The first two EOF's describe mainly the annual cycle. The third EOF is primarily the semiannual cycle although many other EOF's also contain significant semiannual parts. These results reaffirm those based on a shorter data set. In addition, a much stronger spring/fall mode was found in the central equatorial Pacific Ocean for the second EOF than was found earlier. This difference is attributed to the use of broadband radiometer data which were available for the present study. The earlier study used data from a window channel instrument which is not as sensitive to water vapor variations. The fourth EOF describes much of the 1976 to 1977 and 1982 to 1983 ENSO phenomena. There is typically a gap in the spectrum between a semiannual peak and the annual cycle for all but the first EOF. A semiannual OLR dipole straddles the Asian-Australian monsoon track

    Examining Impacts of Mass-Diameter (m-D) and Area-Diameter (A-D) Relationships of Ice Particles on Retrievals of Effective Radius and Ice Water Content from Radar and Lidar Measurements

    Get PDF
    Mass-diameter (m-D) and projected area-diameter (A-D) relations are often used to describe the shape of nonspherical ice particles. This study analytically investigates how retrieved effective radius (r(sub eff)) and ice water content (IWC) from radar and lidar measurements depend on the assumption of m-D [m(D) = a D(sup b)] and A-D [A(D) = D(sup )] relationships. We assume that unattenuated reflectivity factor (Z) and visible extinction coefficient (k(sub ext)) by cloud particles are available from the radar and lidar measurements, respectively. A sensitivity test shows that r(sub eff) increases with increasing a, decreasing b, decreasing , and increasing . It also shows that a 10% variation of a, b, , and induces more than a 100% change of r(sub eff). In addition, we consider both gamma and lognormal particle size distributions (PSDs), and examine the sensitivity of r(sub eff) to the assumption of PSD. It is shown that r(sub eff) increases by up to 10% with increasing dispersion () of the gamma PSD by 2, when large ice particles are predominant. Moreover, r(sub eff) decreases by up to 20% with increasing the width parameter () of the lognormal PSD by 0.1. We also derive an analytic conversion equation between two effective radii when different particle shapes and PSD assumptions are used. When applying the conversion equation to nine types of m-D and A-D relationships, r(sub eff) easily changes up to 30%. The proposed r(sub eff)-conversion method can be used to eliminate the inconsistency of assumptions that made in a cloud retrieval algorithm and a forward radiative transfer model

    Examining Biases in Diurnally-Integrated Shortwave Irradiances due to Two- and Four-Stream Approximations in Cloudy Atmosphere

    Get PDF
    Shortwave irradiance biases due to two- and four-stream approximations have been studied for the last couple of decades, but biases in estimating Earths radiation budget have not been examined in earlier studies. In order to quantify biases in diurnally-averaged irradiances, we integrate the two- and four-stream biases using realistic diurnal variations of cloud properties from Clouds and the Earths Radiant Energy System (CERES) synoptic (SYN) hourly product. Three approximations are examined in this study, delta-two-stream-Eddington (D2strEdd), delta- two-stream-quadrature (D2strQuad), and delta-four-stream-quadrature (D4strQuad). Irradiances computed by the Discrete Ordinates Radiative Transfer (DISORT) and Monte Carlo (MC) methods are used as references. The MC noises are further examined by comparing with DISORT results. When the biases are integrated with a one-day of solar zenith angle variation, regional biases of D2strEdd and D2strQuad reach up to 8 W/sq.m, while biases of D4strQuad reach up to 2 W/sq.m. When the biases are further averaged monthly or annually, regional biases of D2strEdd and D2strQuad can reach 1.5 W/sq.m in SW top-of-atmosphere (TOA) upward irradiances and +3 W/sq.m in surface downward irradiances. In contrast, regional biases of D4strQuad are within +0.9 for TOA irradiances and 1.2 W/sq.m for surface irradiances. Except for polar regions, monthly and annual global mean biases are similar, suggesting that the biases are nearly independent to season. Biases in SW heating rate profiles are up to 0.008 K/d for D2strEdd and 0.016 K/d for D2strQuad, while the biases of the D4strQuad method are negligible

    Validation of the Archived CERES Surface and Atmosphere Radiation Budget (SARB) at SGP

    Get PDF
    The CERES Surface and Atmosphere Radiation Budget (SARB) product (Charlock et al, 2002) includes the vertical profile of broadband SW, broadband LW, and 8-12 micron window (WN) fluxes; upwelling and downwelling at TOA, 70 hPa, 200 hPa, 500 hPa, and the surface; and for all-sky and clear-sky conditions. We test the archived CERES TRMM record of SARB for January-August 1998 and focus on discrepancies with ground-based measurements at SGP. The CERES SARB is generated by a highly modified Fu-Liou radiative transfer code (Fu and Liou, 1993). The most critical inputs for this application are cloud optical properties (fractional area, optical depth, particle size and phase, height of top, and estimate of geometrical thickness Minnis et al., 2002) from the narrowband VIRS imager. Numerous VIRS pixels (approx. 2km resolution at nadir) are matched to each of the large (approx. 20km) CERES broadband footprints (Wielicki et al, 1996). Other inputs include temperature and humidity from ECMWF (Rabier et al, 1998) , NCEP ozone profiles from SBUV and TOVS (Yang et al, 2001), aerosol optical thickness (AOT) from the Model for Atmospheric Transport and Chemistry (MATCH) aerosol assimilation (Collins et al., 2001) or alternately from the VIRS imager (Ignatov and Stowe, 2000). VIRS AOT is available for clear and partly cloudy ocean footprints during daylight; and only when viewing geometry renders a contribution from sunglint as unlikely. For other footprints, AOT is taken from MATCH. AOT is apportioned into fractions of dust (Tegan and Lacis, 1996), sea salt, sulfate, dust, soluble organic, insoluble organic, and soot (Hess et al., 1996) using the 6-hourly MATCH output. Tuned fluxes are retrieved by adjusting inputs to nudge computed TOA fluxes toward CERES observations (Rose et al, 1997). In clear conditions, the fields of humidity, surface skin temperature, surface albedo and AOT are adjusted to produce a closer match of computed and observed fluxes at TOA. When CERES footprints have clouds, the cloud optical thickness, fractional area within the footprint, and temperature of cloud top are adjusted by the tuning algorithm. Both tuned and untuned fluxes are archived, as are the respective adjustments to any parameters at the surface or within the atmosphere

    Variability in Global Top-of-Atmosphere Shortwave Radiation Between 2000 and 2005

    Get PDF
    Measurements from various instruments and analysis techniques are used to directly compare changes in Earth-atmosphere shortwave (SW) top-of-atmosphere (TOA) radiation between 2000 and 2005. Included in the comparison are estimates of TOA reflectance variability from published ground-based Earthshine observations and from new satellite-based CERES, MODIS and ISCCP results. The ground-based Earthshine data show an order-of-magnitude more variability in annual mean SW TOA flux than either CERES or ISCCP, while ISCCP and CERES SW TOA flux variability is consistent to 40%. Most of the variability in CERES TOA flux is shown to be dominated by variations global cloud fraction, as observed using coincident CERES and MODIS data. Idealized Earthshine simulations of TOA SW radiation variability for a lunar-based observer show far less variability than the ground-based Earthshine observations, but are still a factor of 4-5 times more variable than global CERES SW TOA flux results. Furthermore, while CERES global albedos exhibit a well-defined seasonal cycle each year, the seasonal cycle in the lunar Earthshine reflectance simulations is highly variable and out-of-phase from one year to the next. Radiative transfer model (RTM) approaches that use imager cloud and aerosol retrievals reproduce most of the change in SW TOA radiation observed in broadband CERES data. However, assumptions used to represent the spectral properties of the atmosphere, clouds, aerosols and surface in the RTM calculations can introduce significant uncertainties in annual mean changes in regional and global SW TOA flux

    Cloud Effects on Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth's Radiant Energy System (CERES) Data

    Get PDF
    The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere

    Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    Get PDF
    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same

    Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances

    Get PDF
    Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 2719–2740, doi:10.1175/JCLI-D-12-00436.1.The estimate of surface irradiance on a global scale is possible through radiative transfer calculations using satellite-retrieved surface, cloud, and aerosol properties as input. Computed top-of-atmosphere (TOA) irradiances, however, do not necessarily agree with observation-based values, for example, from the Clouds and the Earth’s Radiant Energy System (CERES). This paper presents a method to determine surface irradiances using observational constraints of TOA irradiance from CERES. A Lagrange multiplier procedure is used to objectively adjust inputs based on their uncertainties such that the computed TOA irradiance is consistent with CERES-derived irradiance to within the uncertainty. These input adjustments are then used to determine surface irradiance adjustments. Observations by the Atmospheric Infrared Sounder (AIRS), Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) that are a part of the NASA A-Train constellation provide the uncertainty estimates. A comparison with surface observations from a number of sites shows that the bias [root-mean-square (RMS) difference] between computed and observed monthly mean irradiances calculated with 10 years of data is 4.7 (13.3) W m−2 for downward shortwave and −2.5 (7.1) W m−2 for downward longwave irradiances over ocean and −1.7 (7.8) W m−2 for downward shortwave and −1.0 (7.6) W m−2 for downward longwave irradiances over land. The bias and RMS error for the downward longwave and shortwave irradiances over ocean are decreased from those without constraint. Similarly, the bias and RMS error for downward longwave over land improves, although the constraint does not improve downward shortwave over land. This study demonstrates how synergetic use of multiple instruments (CERES, MODIS, CALIPSO, CloudSat, AIRS, and geostationary satellites) improves the accuracy of surface irradiance computations.The work was supported by theNASACERES and, in part, Energy Water Cycle Study (NEWS) projects.2013-11-0

    Cloud Occurrences and Cloud Radiative Effects (CREs) from CCCM and CloudSat Radar-Lidar (RL) Products

    Get PDF
    Two kinds of radar-lidar synergy cloud products are compared and analyzed in this study; CERES-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar (RL) product such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF LIDAR, CCCM has more low-level ( 40). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar, which may be related to precipitation. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found over three regions. First, CCCM has larger shortwave (SW) and longwave (LW) CREs than FXLHR-LIDAR along the west coasts of Africa and America. This might be caused by missing small-scale marine boundary layer clouds in FLXHR-LIDAR. Second, over tropical oceans where precipitation frequently occurs, SW and LW CREs from FLXHR-LIDAR are larger than those from CCCM partly because FLXHR-LIDAR algorithm includes the contribution of rainwater to total liquid water path. Third, over midlatitude storm-track regions, CCCM shows larger SW and LW CREs than FLXHR-LIDAR, due to CCCM biases caused by larger cloud optical depth or higher cloud effective height
    corecore