3 research outputs found

    NOX2-derived reactive oxygen species are crucial for CD29-induced pro-survival signalling in cardiomyocytes

    Get PDF
    Aims The highly expressed cell adhesion receptor CD29 (β1-integrin) is essential for cardiomyocyte growth and survival, and its loss of function causes severe heart disease. However, CD29-induced signalling in cardiomyocytes is ill defined and may involve reactive oxygen species (ROS). A decisive source of cardiac ROS is the abundant NADPH oxidase (NOX) isoform NOX2. Because understanding of NOX-derived ROS in the heart is still poor, we sought to test the role of ROS and NOX in CD29-induced survival signalling in cardiomyocytes. Methods and results In neonatal rat ventricular myocytes, CD29 activation induced intracellular ROS formation (oxidative burst) as assessed by flow cytometry using the redox-sensitive fluorescent dye dichlorodihydrofluorescein diacetate. This burst was inhibited by apocynin and diphenylene iodonium. Further, activation of CD29 enhanced NOX activity (lucigenin-enhanced chemiluminescence) and activated the MEK/ERK and PI3K/Akt survival pathways. CD29 also induced phosphorylation of the inhibitory Ser9 on the pro-apoptotic kinase glycogen synthase kinase-3β in a PI3K/Akt- and MEK-dependent manner, and improved cardiomyocyte viability under conditions of oxidative stress. The ROS scavenger MnTMPyP or adenoviral co-overexpression of the antioxidant enzymes superoxide dismutase and catalase inhibited CD29-induced pro-survival signalling. Further, CD29-induced protective pathways were lost in mouse cardiomyocytes deficient for NOX2 or functional p47phox, a regulatory subunit of NOX. Conclusion p47phox-dependent, NOX2-derived ROS are mandatory for CD29-induced pro-survival signalling in cardiomyocytes. These findings go in line with a growing body of evidence suggesting that ROS can be beneficial to the cell and support a crucial role for NOX2-derived ROS in cell survival in the hear

    Reactive oxygen/nitrogen species and the myocardial cell homeostasis : an ambiguous relationship

    No full text
    The totality of functional cardiomyocytes and an intact cardiac progenitor cell pool are key players in the myocardial cell homeostasis. Perturbation of either one may compromise the structural and functional integrity of the heart and lead to heart failure. Reactive oxygen/nitrogen species (ROS/RNS) are important regulators of cardiomyocyte viability; more recently, the interrelation between ROS and progenitor cell behavior and fate has moved into the spotlight. Increasing evidence suggests not only that ROS participate in the regulation of cardiac progenitor cell survival but also that they likewise affect their functional properties in terms of self-proliferation and differentiation. The apparent dichotomy of ROS/RNS effects with their adaptive and regulatory character on the one hand and their maladaptive and damaging features on the other pose a great challenge in view of the therapeutic exploitation of their role in the regulation of the myocardial cell homeostasis. In this article, mechanisms and potential significance of ROS/RNS action in the regulation of the myocardial cell homeostasis, in particular with respect to the preservation of viable cardiomyocytes and the maintenance of a functional cardiac progenitor cell pool, will be discussed
    corecore