5 research outputs found

    Inducible expression quantitative trait locus analysis of the MUC5AC gene in asthma in urban populations of children

    Get PDF
    BACKGROUND: Mucus plugging can worsen asthma control, lead to reduced lung function and fatal exacerbations. MUC5AC is the secretory mucin implicated in mucus plugging, and MUC5AC gene expression has been associated with development of airway obstruction and asthma exacerbations in urban children with asthma. However, the genetic determinants of MUC5AC expression are not established. OBJECTIVE: To assess single-nucleotide polymorphisms (SNPs) that influence MUC5AC expression and relate to pulmonary functions in childhood asthma. METHODS: We used RNA-sequencing data from upper airway samples and performed cis-expression quantitative trait loci (eQTL) and allele specific expression (ASE) analyses in two cohorts of predominantly Black and Hispanic urban children, a high asthma-risk birth cohort and an exacerbation-prone asthma cohort. We further investigated inducible MUC5AC eQTLs during incipient asthma exacerbations. We tested significant eQTLs SNPs for associations with lung function measurements and investigated their functional consequences in DNA regulatory databases. RESULTS: We identified two independent groups of SNPs in the MUC5AC gene that were significantly associated with MUC5AC expression. Moreover, these SNPs showed stronger eQTL associations with MUC5AC expression during asthma exacerbations, consistent with inducible expression. SNPs in one group also showed significant association with decreased pulmonary functions. These SNPs included multiple EGR1 transcription factor binding sites suggesting a mechanism of effect. CONCLUSIONS: These findings demonstrate the applicability of organ specific RNA-sequencing data to determine genetic factors contributing to a key disease pathway. Specifically, they suggest important genetic variations that may underlie propensity to mucus plugging in asthma and could be important in targeted asthma phenotyping and disease management strategies

    Fine-mapping studies distinguish genetic risks for childhood- and adult-onset asthma in the HLA region

    No full text
    Background: Genome-wide association studies of asthma have revealed robust associations with variation across the human leukocyte antigen (HLA) complex with independent associations in the HLA class I and class II regions for both childhood-onset asthma (COA) and adult-onset asthma (AOA). However, the specific variants and genes contributing to risk are unknown. Methods: We used Bayesian approaches to perform genetic fine-mapping for COA and AOA (n=9432 and 21,556, respectively; n=318,167 shared controls) in White British individuals from the UK Biobank and to perform expression quantitative trait locus (eQTL) fine-mapping in immune (lymphoblastoid cell lines, n=398; peripheral blood mononuclear cells, n=132) and airway (nasal epithelial cells, n=188) cells from ethnically diverse individuals. We also examined putatively causal protein coding variation from protein crystal structures and conducted replication studies in independent multi-ethnic cohorts from the UK Biobank (COA n=1686; AOA n=3666; controls n=56,063). Results: Genetic fine-mapping revealed both shared and distinct causal variation between COA and AOA in the class I region but only distinct causal variation in the class II region. Both gene expression levels and amino acid variation contributed to risk. Our results from eQTL fine-mapping and amino acid visualization suggested that the HLA-DQA1*03:01 allele and variation associated with expression of the nonclassical HLA-DQA2 and HLA-DQB2 genes accounted entirely for the most significant association with AOA in GWAS. Our studies also suggested a potentially prominent role for HLA-C protein coding variation in the class I region in COA. We replicated putatively causal variant associations in a multi-ethnic cohort. Conclusions: We highlight roles for both gene expression and protein coding variation in asthma risk and identified putatively causal variation and genes in the HLA region. A convergence of genomic, transcriptional, and protein coding evidence implicates the HLA-DQA2 and HLA-DQB2 genes and HLA-DQA1*03:01 allele in AOA.</p

    Expression quantitative trait locus fine mapping of the 17q12-21 asthma locus in African American children: a genetic association and gene expression study

    No full text
    BACKGROUND: African ancestry is associated with a higher prevalence and greater severity of asthma than European ancestries, yet genetic studies of the most common locus associated with childhood-onset asthma, 17q12-21, in African Americans have been inconclusive. The aim of this study was to leverage both the phenotyping of the Children\u27s Respiratory and Environmental Workgroup (CREW) birth cohort consortium, and the reduced linkage disequilibrium in African Americans, to fine map the 17q12-21 locus. METHODS: We first did a genetic association study and meta-analysis using 17q12-21 tag single-nucleotide polymorphisms (SNPs) for childhood-onset asthma in 1613 European American and 870 African American children from the CREW consortium. Nine tag SNPs were selected based on linkage disequilibrium patterns at 17q12-21 and their association with asthma, considering the effect allele under an additive model (0, 1, or 2 effect alleles). Results were meta-analysed with publicly available summary data from the EVE consortium (on 4303 European American and 3034 African American individuals) for seven of the nine SNPs of interest. Subsequently, we tested for expression quantitative trait loci (eQTLs) among the SNPs associated with childhood-onset asthma and the expression of 17q12-21 genes in resting peripheral blood mononuclear cells (PBMCs) from 85 African American CREW children and in upper airway epithelial cells from 246 African American CREW children; and in lower airway epithelial cells from 44 European American and 72 African American adults from a case-control study of asthma genetic risk in Chicago (IL, USA). FINDINGS: 17q12-21 SNPs were broadly associated with asthma in European Americans. Only two SNPs (rs2305480 in gasdermin-B [GSDMB] and rs8076131 in ORMDL sphingolipid biosynthesis regulator 3 [ORMDL3]) were associated with asthma in African Americans, at a Bonferroni-corrected threshold of p\u3c0·0055 (for rs2305480_G, odds ratio [OR] 1·36 [95% CI 1·12-1·65], p=0·0014; and for rs8076131_A, OR 1·37 [1·13-1·67], p=0·0010). In upper airway epithelial cells from African American children, genotype at rs2305480 was the most significant eQTL for GSDMB (eQTL effect size [β] 1·35 [95% CI 1·25-1·46], p\u3c0·0001), and to a lesser extent showed an eQTL effect for post-GPI attachment to proteins phospholipase 3 (β 1·15 [1·08-1·22], p\u3c0·0001). No SNPs were eQTLs for ORMDL3. By contrast, in PBMCs, the five core SNPs were associated only with expression of GSDMB and ORMDL3. Genotype at rs12936231 (in zona pellucida binding protein 2) showed the strongest associations across both genes (for GSDMB, eQTLβ 1·24 [1·15-1·32], p\u3c0·0001; and for ORMDL3 (β 1·19 [1·12-1·24], p\u3c0·0001). The eQTL effects of rs2305480 on GSDMB expression were replicated in lower airway cells from African American adults (β 1·29 [1·15-1·44], p\u3c0·0001). INTERPRETATION: Our study suggests that SNPs regulating GSDMB expression in airway epithelial cells have a major role in childhood-onset asthma, whereas SNPs regulating the expression levels of 17q12-21 genes in resting blood cells are not central to asthma risk. Our genetic and gene expression data in African Americans and European Americans indicated GSDMB to be the leading candidate gene at this important asthma locus. FUNDING: National Institutes of Health, Office of the Director

    Expression quantitative trait locus fine mapping of the 17q12–21 asthma locus in African American children: a genetic association and gene expression study

    No full text
    Background: African ancestry is associated with a higher prevalence and greater severity of asthma than European ancestries, yet genetic studies of the most common locus associated with childhood-onset asthma, 17q12–21, in African Americans have been inconclusive. The aim of this study was to leverage both the phenotyping of the Children's Respiratory and Environmental Workgroup (CREW) birth cohort consortium, and the reduced linkage disequilibrium in African Americans, to fine map the 17q12–21 locus. Methods: We first did a genetic association study and meta-analysis using 17q12–21 tag single-nucleotide polymorphisms (SNPs) for childhood-onset asthma in 1613 European American and 870 African American children from the CREW consortium. Nine tag SNPs were selected based on linkage disequilibrium patterns at 17q12–21 and their association with asthma, considering the effect allele under an additive model (0, 1, or 2 effect alleles). Results were meta-analysed with publicly available summary data from the EVE consortium (on 4303 European American and 3034 African American individuals) for seven of the nine SNPs of interest. Subsequently, we tested for expression quantitative trait loci (eQTLs) among the SNPs associated with childhood-onset asthma and the expression of 17q12–21 genes in resting peripheral blood mononuclear cells (PBMCs) from 85 African American CREW children and in upper airway epithelial cells from 246 African American CREW children; and in lower airway epithelial cells from 44 European American and 72 African American adults from a case-control study of asthma genetic risk in Chicago (IL, USA). Findings: 17q12–21 SNPs were broadly associated with asthma in European Americans. Only two SNPs (rs2305480 in gasdermin-B [GSDMB] and rs8076131 in ORMDL sphingolipid biosynthesis regulator 3 [ORMDL3]) were associated with asthma in African Americans, at a Bonferroni-corrected threshold of p<0·0055 (for rs2305480_G, odds ratio [OR] 1·36 [95% CI 1·12–1·65], p=0·0014; and for rs8076131_A, OR 1·37 [1·13–1·67], p=0·0010). In upper airway epithelial cells from African American children, genotype at rs2305480 was the most significant eQTL for GSDMB (eQTL effect size [β] 1·35 [95% CI 1·25–1·46], p<0·0001), and to a lesser extent showed an eQTL effect for post-GPI attachment to proteins phospholipase 3 (β 1·15 [1·08–1·22], p<0·0001). No SNPs were eQTLs for ORMDL3. By contrast, in PBMCs, the five core SNPs were associated only with expression of GSDMB and ORMDL3. Genotype at rs12936231 (in zona pellucida binding protein 2) showed the strongest associations across both genes (for GSDMB, eQTLβ 1·24 [1·15–1·32], p<0·0001; and for ORMDL3 (β 1·19 [1·12–1·24], p<0·0001). The eQTL effects of rs2305480 on GSDMB expression were replicated in lower airway cells from African American adults (β 1·29 [1·15–1·44], p<0·0001). Interpretation: Our study suggests that SNPs regulating GSDMB expression in airway epithelial cells have a major role in childhood-onset asthma, whereas SNPs regulating the expression levels of 17q12–21 genes in resting blood cells are not central to asthma risk. Our genetic and gene expression data in African Americans and European Americans indicated GSDMB to be the leading candidate gene at this important asthma locus.6 month embargo; published: 01 May 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore