123 research outputs found
The HLA class II allele DRB1*1501 is over-represented in patients with idiopathic pulmonary fibrosis
Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and medically refractory lung disease with a grim prognosis. Although the etiology of IPF remains perplexing, abnormal adaptive immune responses are evident in many afflicted patients. We hypothesized that perturbations of human leukocyte antigen (HLA) allele frequencies, which are often seen among patients with immunologic diseases, may also be present in IPF patients. Methods/Principal Findings: HLA alleles were determined in subpopulations of IPF and normal subjects using molecular typing methods. HLA-DRB1*15 was over-represented in a discovery cohort of 79 Caucasian IPF subjects who had lung transplantations at the University of Pittsburgh (36.7%) compared to normal reference populations. These findings were prospectively replicated in a validation cohort of 196 additional IPF subjects from four other U.S. medical centers that included both ambulatory patients and lung transplantation recipients. High-resolution typing was used to further define specific HLA-DRB1*15 alleles. DRB1*1501 prevalence in IPF subjects was similar among the 143 ambulatory patients and 132 transplant recipients (31.5% and 34.8%, respectively, p = 0.55). The aggregate prevalence of DRB1*1501 in IPF patients was significantly greater than among 285 healthy controls (33.1% vs. 20.0%, respectively, OR 2.0; 95%CI 1.3-2.9, p = 0.0004). IPF patients with DRB1*1501 (n = 91) tended to have decreased diffusing capacities for carbon monoxide (DLCO) compared to the 184 disease subjects who lacked this allele (37.8±1.7% vs. 42.8±1.4%, p = 0.036). Conclusions/Significance: DRB1*1501 is more prevalent among IPF patients than normal subjects, and may be associated with greater impairment of gas exchange. These data are novel evidence that immunogenetic processes can play a role in the susceptibility to and/or manifestations of IPF. Findings here of a disease association at the HLA-DR locus have broad pathogenic implications, illustrate a specific chromosomal area for incremental, targeted genomic study, and may identify a distinct clinical phenotype among patients with this enigmatic, morbid lung disease
Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia
BACKGROUND
Coronavirus disease 2019 (Covid-19) is associated with immune dysregulation and hyperinflammation, including elevated interleukin-6 levels. The use of tocilizu- mab, a monoclonal antibody against the interleukin-6 receptor, has resulted in better outcomes in patients with severe Covid-19 pneumonia in case reports and retrospective observational cohort studies. Data are needed from randomized, placebo-controlled trials.
METHODS
In this phase 3 trial, we randomly assigned patients who were hospitalized with severe Covid-19 pneumonia in a 2:1 ratio receive a single intravenous infusion of tocilizumab (at a dose of 8 mg per kilogram of body weight) or placebo. Approxi- mately one quarter of the participants received a second dose of tocilizumab or placebo 8 to 24 hours after the first dose. The primary outcome was clinical status at day 28 on an ordinal scale ranging from 1 (discharged or ready for discharge) to 7 (death) in the modified intention-to-treat population, which included all the patients who had received at least one dose of tocilizumab or placebo.
RESULTS
Of the 452 patients who underwent randomization, 438 (294 in the tocilizumab group and 144 in the placebo group) were included in the primary and secondary analyses. The median value for clinical status on the ordinal scale at day 28 was 1.0 (95% confidence interval [CI], 1.0 to 1.0) in the tocilizumab group and 2.0 (non-ICU hospitalization without supplemental oxygen) (95% CI, 1.0 to 4.0) in the placebo group (between-group difference, −1.0; 95% CI, −2.5 to 0; P=0.31 by the van Elteren test). In the safety population, serious adverse events occurred in 103 of 295 patients (34.9%) in the tocilizumab group and in 55 of 143 patients (38.5%) in the placebo group. Mortality at day 28 was 19.7% in the tocilizumab group and 19.4% in the placebo group (weighted difference, 0.3 percentage points (95% CI, –7.6 to 8.2; nominal P=0.94).
CONCLUSIONS
In this randomized trial involving hospitalized patients with severe Covid-19 pneu- monia, the use of tocilizumab did not result in significantly better clinical status or lower mortality than placebo at 28 days. (Funded by F. Hoffmann–La Roche and the Department of Health and Human Services; COVACTA ClinicalTrials.gov num- ber, NCT04320615.
Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity
Lung epithelial cells exhibit a high degree of plasticity. Alterations to lung epithelial cell function are critically involved in several chronic lung diseases such as pulmonary fibrosis. Pulmonary fibrosis is characterized by repetitive injury and subsequent impaired repair of epithelial cells, which leads to aberrant growth factor activation and fibroblast accumulation. Increased proliferation and hyper- and metaplasia of epithelial cells upon injury have also been observed in pulmonary fibrosis; this epithelial cell activation might represent the basis for lung cancer development. Indeed, several studies have provided histopathological evidence of an increased incidence of lung cancer in pulmonary fibrosis. The mechanisms involved in the development of cancer in pulmonary fibrosis, however, remain poorly understood. This review highlights recently uncovered molecular mechanisms shared between lung cancer and fibrosis, which extend the current evidence of a common trait of cancer and fibrosis, as provided by histopathological observations. Copyright (C) 2011 S. Karger AG, Base
The Peripheral Blood Transcriptome Identifies the Presence and Extent of Disease in Idiopathic Pulmonary Fibrosis
<div><h3>Rationale</h3><p>Peripheral blood biomarkers are needed to identify and determine the extent of idiopathic pulmonary fibrosis (IPF). Current physiologic and radiographic prognostic indicators diagnose IPF too late in the course of disease. We hypothesize that peripheral blood biomarkers will identify disease in its early stages, and facilitate monitoring for disease progression.</p> <h3>Methods</h3><p>Gene expression profiles of peripheral blood RNA from 130 IPF patients were collected on Agilent microarrays. Significance analysis of microarrays (SAM) with a false discovery rate (FDR) of 1% was utilized to identify genes that were differentially-expressed in samples categorized based on percent predicted D<sub>L</sub>CO and FVC.</p> <h3>Main Measurements and Results</h3><p>At 1% FDR, 1428 genes were differentially-expressed in mild IPF (D<sub>L</sub>CO >65%) compared to controls and 2790 transcripts were differentially- expressed in severe IPF (D<sub>L</sub>CO >35%) compared to controls. When categorized by percent predicted D<sub>L</sub>CO, SAM demonstrated 13 differentially-expressed transcripts between mild and severe IPF (< 5% FDR). These include CAMP, CEACAM6, CTSG, DEFA3 and A4, OLFM4, HLTF, PACSIN1, GABBR1, IGHM, and 3 unknown genes. Principal component analysis (PCA) was performed to determine outliers based on severity of disease, and demonstrated 1 mild case to be clinically misclassified as a severe case of IPF. No differentially-expressed transcripts were identified between mild and severe IPF when categorized by percent predicted FVC.</p> <h3>Conclusions</h3><p>These results demonstrate that the peripheral blood transcriptome has the potential to distinguish normal individuals from patients with IPF, as well as extent of disease when samples were classified by percent predicted D<sub>L</sub>CO, but not FVC.</p> </div
Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia
BACKGROUND
Coronavirus disease 2019 (Covid-19) is associated with immune dysregulation and hyperinflammation, including elevated interleukin-6 levels. The use of tocilizumab, a monoclonal antibody against the interleukin-6 receptor, has resulted in better outcomes in patients with severe Covid-19 pneumonia in case reports and retrospective observational cohort studies. Data are needed from randomized, placebo-controlled trials.
METHODS
In this phase 3 trial, we randomly assigned patients who were hospitalized with severe Covid-19 pneumonia in a 2:1 ratio receive a single intravenous infusion of tocilizumab (at a dose of 8 mg per kilogram of body weight) or placebo. Approximately one quarter of the participants received a second dose of tocilizumab or placebo 8 to 24 hours after the first dose. The primary outcome was clinical status at day 28 on an ordinal scale ranging from 1 (discharged or ready for discharge) to 7 (death) in the modified intention-to-treat population, which included all the patients who had received at least one dose of tocilizumab or placebo.
RESULTS
Of the 452 patients who underwent randomization, 438 (294 in the tocilizumab group and 144 in the placebo group) were included in the primary and secondary analyses. The median value for clinical status on the ordinal scale at day 28 was 1.0 (95% confidence interval [CI], 1.0 to 1.0) in the tocilizumab group and 2.0 (non-ICU hospitalization without supplemental oxygen) (95% CI, 1.0 to 4.0) in the placebo group (between-group difference, −1.0; 95% CI, −2.5 to 0; P=0.31 by the van Elteren test). In the safety population, serious adverse events occurred in 103 of 295 patients (34.9%) in the tocilizumab group and in 55 of 143 patients (38.5%) in the placebo group. Mortality at day 28 was 19.7% in the tocilizumab group and 19.4% in the placebo group (weighted difference, 0.3 percentage points; 95% CI, –7.6 to 8.2; nominal P=0.94).
CONCLUSIONS
In this randomized trial involving hospitalized patients with severe Covid-19 pneumonia, the use of tocilizumab did not result in significantly better clinical status or lower mortality than placebo at 28 days. (Funded by F. Hoffmann–La Roche and the Department of Health and Human Services; COVACTA ClinicalTrials.gov number, NCT04320615
Detection and Early Referral of Patients With Interstitial Lung Abnormalities: An Expert Survey Initiative
Background: Interstitial lung abnormalities (ILA) may represent undiagnosed early-stage or subclinical interstitial lung disease (ILD). ILA are often observed incidentally in patients who subsequently develop clinically overt ILD. There is limited information on consensus definitions for, and the appropriate evaluation of, ILA. Early recognition of patients with ILD remains challenging, yet critically important. Expert consensus could inform early recognition and referral. Research Question: Can consensus-based expert recommendations be identified to guide clinicians in the recognition, referral, and follow-up of patients with or at risk of developing early ILDs? Study Design and Methods: Pulmonologists and radiologists with expertise in ILD participated in two iterative rounds of surveys. The surveys aimed to establish consensus regarding ILA reporting, identification of patients with ILA, and identification of populations that might benefit from screening for ILD. Recommended referral criteria and follow-up processes were also addressed. Threshold for consensus was defined a priori as ≥ 75% agreement or disagreement. Results: Fifty-five experts were invited and 44 participated; consensus was reached on 39 of 85 questions. The following clinically important statements achieved consensus: honeycombing and traction bronchiectasis or bronchiolectasis indicate potentially progressive ILD; honeycombing detected during lung cancer screening should be reported as potentially significant (eg, with the Lung CT Screening Reporting and Data System “S-modifier” [Lung-RADS; which indicates clinically significant or potentially significant noncancer findings]), recommending referral to a pulmonologist in the radiology report; high-resolution CT imaging and full pulmonary function tests should be ordered if nondependent subpleural reticulation, traction bronchiectasis, honeycombing, centrilobular ground-glass nodules, or patchy ground-glass opacity are observed on CT imaging; patients with honeycombing or traction bronchiectasis should be referred to a pulmonologist irrespective of diffusion capacity values; and patients with systemic sclerosis should be screened with pulmonary function tests for early-stage ILD. Interpretation: Guidance was established for identifying clinically relevant ILA, subsequent referral, and follow-up. These results lay the foundation for developing practical guidance on managing patients with ILA
Comparative analysis of the human hepatic and adipose tissue transcriptomes during LPS-induced inflammation leads to the identification of differential biological pathways and candidate biomarkers
<p>Abstract</p> <p>Background</p> <p>Insulin resistance (IR) is accompanied by chronic low grade systemic inflammation, obesity, and deregulation of total body energy homeostasis. We induced inflammation in adipose and liver tissues <it>in vitro </it>in order to mimic inflammation <it>in vivo </it>with the aim to identify tissue-specific processes implicated in IR and to find biomarkers indicative for tissue-specific IR.</p> <p>Methods</p> <p>Human adipose and liver tissues were cultured in the absence or presence of LPS and DNA Microarray Technology was applied for their transcriptome analysis. Gene Ontology (GO), gene functional analysis, and prediction of genes encoding for secretome were performed using publicly available bioinformatics tools (DAVID, STRING, SecretomeP). The transcriptome data were validated by proteomics analysis of the inflamed adipose tissue secretome.</p> <p>Results</p> <p>LPS treatment significantly affected 667 and 483 genes in adipose and liver tissues respectively. The GO analysis revealed that during inflammation adipose tissue, compared to liver tissue, had more significantly upregulated genes, GO terms, and functional clusters related to inflammation and angiogenesis. The secretome prediction led to identification of 399 and 236 genes in adipose and liver tissue respectively. The secretomes of both tissues shared 66 genes and the remaining genes were the differential candidate biomarkers indicative for inflamed adipose or liver tissue. The transcriptome data of the inflamed adipose tissue secretome showed excellent correlation with the proteomics data.</p> <p>Conclusions</p> <p>The higher number of altered proinflammatory genes, GO processes, and genes encoding for secretome during inflammation in adipose tissue compared to liver tissue, suggests that adipose tissue is the major organ contributing to the development of systemic inflammation observed in IR. The identified tissue-specific functional clusters and biomarkers might be used in a strategy for the development of tissue-targeted treatment of insulin resistance in patients.</p
- …