4 research outputs found

    Electron-electron interactions in decoupled graphene layers

    Full text link
    Multi-layer graphene on the carbon face of silicon carbide is an intriguing electronic system which typically consists of a stack of ten or more layers. Rotational stacking faults in this system dramatically reduce inter-layer coherence. In this article we report on the influence of inter-layer interactions, which remain strong even when coherence is negligible, on the Fermi liquid properties of charged graphene layers. We find that inter-layer interactions increase the magnitudes of correlation energies and decrease quasiparticle velocities, even when remote-layer carrier densities are small, and that they lessen the influence of exchange and correlation on the distribution of carriers across layers.Comment: 8 pages, 4 figures, submitte

    Quantum Monte Carlo for correlated out-of-equilibrium nanoelectronic devices

    Get PDF
    International audienceWe present a simple, general purpose, quantum Monte-Carlo algorithm for out-of-equilibrium interacting nanoelectronics systems. It allows one to systematically compute the expansion of any physical observable (such as current or density) in powers of the electron-electron interaction coupling constant U. It is based on the out-of-equilibrium Keldysh Green's function formalism in real-time and corresponds to evaluating all the Feynman diagrams to a given order U n (up to n = 15 in the present work). A key idea is to explicitly sum over the Keldysh indices in order to enforce the unitarity of the time evolution. The coefficients of the expansion can easily be obtained for long time, stationary regimes, even at zero temperature. We then illustrate our approach with an application to the Anderson model, an archetype interacting mesoscopic system. We recover various results of the literature such as the spin susceptibility or the " Kondo ridge " in the current-voltage characteristics. In this case, we found the Monte-Carlo free of the sign problem even at zero temperature , in the stationary regime and in absence of particle-hole symmetry. The main limitation of the method is the lack of convergence of the expansion in U for large U , i.e. a mathematical property of the model rather than a limitation of the Monte-Carlo algorithm. Standard extrapolation methods of divergent series can be used to evaluate the series in the strong correlation regime
    corecore