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We present a simple, general purpose, quantum Monte-Carlo algorithm for out-of-equilibrium
interacting nanoelectronics systems. It allows one to systematically compute the expansion of any
physical observable (such as current or density) in powers of the electron-electron interaction cou-
pling constant U . It is based on the out-of-equilibrium Keldysh Green’s function formalism in
real-time and corresponds to evaluating all the Feynman diagrams to a given order Un (up to
n = 15 in the present work). A key idea is to explicitly sum over the Keldysh indices in order to
enforce the unitarity of the time evolution. The coefficients of the expansion can easily be obtained
for long time, stationary regimes, even at zero temperature. We then illustrate our approach with an
application to the Anderson model, an archetype interacting mesoscopic system. We recover various
results of the literature such as the spin susceptibility or the ”Kondo ridge” in the current-voltage
characteristics. In this case, we found the Monte-Carlo free of the sign problem even at zero temper-
ature, in the stationary regime and in absence of particle-hole symmetry. The main limitation of the
method is the lack of convergence of the expansion in U for large U , i.e. a mathematical property of
the model rather than a limitation of the Monte-Carlo algorithm. Standard extrapolation methods
of divergent series can be used to evaluate the series in the strong correlation regime.

The field of electronic correlations is largely dominated
by applications to strongly correlated materials such as
high-Tc superconductors or heavy fermions. As a re-
sult, the large effort made by the community to build
new numerical techniques to address correlations aims
chiefly at reaching strongly correlated regimes for sys-
tems whose one-body dynamics is rather simple (the
archetype of these systems being the Hubbard model).
There are, however, many situations where the correla-
tions are either small or moderate, yet their interplay
with one-body dynamics might be very interesting. Ex-
amples include, for instance, the zero-bias anomaly in dis-
ordered systems1, the Fermi- edge singularity in a quan-
tum dot2, a Kondo impurity embedded in an electronic
interferometer3 and possibly the 0.7 anomaly in a quan-
tum point contact4. While for a few situations, e.g. zero-
dimensional (Kondo effects) and one-dimensional (Lut-
tinger liquids) systems there exist exact analytical and
numerical techniques5,6, the vast majority of these prob-
lems remains elusive to theoretical approaches. The aim
of this article is to design a technique that could ad-
dress moderate interactions for a large variety of out-of-
equilibrium situations.

A natural route for dealing with electron-electron inter-
actions is to compute the expansion of physical quantities
in powers of the interaction coupling constant, denoted
hereafter by U . This expansion is traditionally written
in terms of Feynman diagrams. One can then compute
the first orders, or try various resummation strategies
that have been elaborated in order to choose the relevant
Feynman diagrams for a given problem.7 From a numer-
ical point of view, systematic expansions in powers of U
have also been intensively studied. In this context, vari-
ous diagrammatic Monte-Carlo have been developed and

studied8–11, which aim at explicitly summing the series
of Feynman diagrams numerically, for example for the
self-energy. Concerning quantum impurity models, there
has been an intense activity in the recent years in the
development of new continuous (mostly imaginary) time
quantum Monte-Carlo techniques, based on an expansion
in U (or around the strong coupling limit). These new
algorithms are of huge practical value in solving the self-
consistent impurity problems that arise from the dynam-
ical mean-field theory of correlated bulk systems12–15,
even though they still suffer from the sign problem. They
have been extended to the non-equilibrium case in a rel-
atively straightforward way, simply adapting the Monte-
Carlo method to the Keldysh formalism16–20. However,
these out-of-equilibrium versions suffer from a severe dy-
namical sign problem, compared to their equilibrium
counterparts, which has severely limited their usage in
practice. In particular, they can not reach the long-
time steady-state limit in several regimes of parameters.
Moreover, the approach of Ref. 19 and 20 has only been
shown to work with sufficient accuracy for an Anderson
impurity with particle-hole symmetry, i.e. a very special
point of the phase diagram. More recently, bold diagram-
matic Monte-Carlo for impurity models have also been
extended to the Keldysh context and used in combina-
tion with the master equation for the density matrix21,22

to reach longer time. Finally, testing these approaches
in large systems, even at moderate interaction, remains
also an open question.

In this paper, we first present a simple, systematic and
general Monte-Carlo method to compute the first 10 to
15 coefficients of the expansion of any physical observ-
able for a nanoelectronic system, in an out-of-equilibrium
situation. The system can be a nanoscopic system con-
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nected to leads or a quantum impurity in a (possibly self-
consistently determined) bath. Our method can be ap-
plied in various non-equilibrium contexts, either at short
time after a quench, or in the long-time steady-state. In
particular, it can easily reach the steady-state limit, even
at zero temperature, as well as any intermediate time. It
is also not limited to particle-hole symmetric case. The
software developed can be seen as an extension of the
Kwant package23 to tackle electron-electron interactions,
or of the Triqs package24 to deal with non-equilibrium sit-
uations. Second, we discuss the issue of the summation
of the perturbative series of the physical quantity, which
is well-known to be a prominent topic in the quantum
many-body problem. We will show that in the out-of-
equilibrium Anderson model, for the parameters studied
here, the current through the dot or the density on it
have a finite apparent radius of convergence as a func-
tion of U . We will also show that by simply modify-
ing the quadratic part of the action (i.e. playing with
the so-called α term in12), one can significantly extend
the radius of convergence, hence in practice compute for
higher values of the interaction. Finally, we show that
extrapolation technique for divergent series, e.g. Lin-
delöf method, can also significantly improve the range of
applicability of our method.

In section I, we summarize our method and explain the
main differences between our work and previous ones.
This short section is mostly for QMC experts and can
be skipped for people new to the field. Section II in-
troduces our models and notations as well as the ba-
sic many-body perturbation expression that forms our
starting point. This expression relates the interacting
observables (such as current or magnetization) to the
non-interacting Green’s function of the system. Section
III discusses how to obtain the latter one, a prerequi-
site to any QMC scheme. While this step is relatively
straightforward for simple impurity problems (the vast
majority of the systems considered so far), its general-
ization to non-trivial geometries requires some care, or
can become a computationally prohibitive task. Section
IV discusses a direct calculation of the first few orders
of the interaction expansion by a brute force numerical
integration. The discussion of the structure of the func-
tions to be integrated will lead to a key insight for the
Monte-Carlo. Section V describes our QMC algorithm.
In Section VI we use the QMC algorithm to calculate the
first 10-15 terms in the expansion in powers of the inter-
action strength of the local charge on an Anderson impu-
rity in equilibrium. We analyze the radius of convergence
of the series in presence/absence of a mean-field term in
the non-interacting Hamiltonian. In section VII, we use
the method in the ouf-of-equilibrium regime, to obtain
some results associated with the Kondo effect. The ar-
ticle ends with a discussion and various appendices that
contain some proofs or technical details.

I. SUMMARY OF THE APPROACH

Let us briefly sketch our algorithm and its proper-
ties. Non-QMC experts can skip this part, since its con-
tent will be detailed and explained in the next sections.
We start with a general Hamiltonian Ĥ(t) = Ĥ0(t) +

UĤint(t) where Ĥ0(t) is a non-interacting quadratic
Hamiltonian of an infinite system (typically a nano-
electronic system connected to several electrodes) and

Ĥint(t) contains the interacting part which is switched
on at t = 0. We aim at calculating the expansion of an
observable Q (say the current or the local occupation of
an orbital) in powers of U :

Q(U) =

+∞∑
n=0

QnU
n (1)

The Qn are given by many-body perturbation theory in
the Keldysh formalism in the form of a multi-dimensional
integral of a determinant, according to Wick’s theorem:

Qn =
∑
Cn

W (Cn) detMn(Cn) (2)

The sum
∑
Cn contains an n-dimensional integral over in-

ternal times ui ∈ [0, t] as well as a sum over n Keldysh in-
dices ai ∈ {0, 1} and a sum over the different interaction
matrix elements. W (Cn) contains interaction matrix ele-
ments. detMn(Cn) is the determinant of a matrix built

up with the non-interacting Green’s function of Ĥ0(t).
Our algorithm works as follows:

(1) We compute directly the Qn. In contrast, the
imaginary-time or real-time17,18,20 continuous-time algo-
rithms sample the partition function of the problem Z. In
the real-time Keldysh formalism however, the partition
function is Z = 1 by construction and as we shall see, its
sampling is not well suited for obtaining the Qn. Techni-
cally, the integrand detMn(Cn) is concentrated around
times ui which are close to t while in the sampling of Z
the ui are spread over the full interval [0, t]. This first
step ensures that our technique converges well as t→∞
and that this limit can be taken order by order in U .

(2) In the Keldysh formalism, one typically starts from
a non interacting system, switches on the interaction,
let the system evolve for a time t, measures the observ-
able and then evolves back to the non-interacting ini-
tial state. The Keldysh indices ai are reminiscent of
the two evolutions [from 0 to t (ai = 0) and back to
0 (ai = 1)]. The time evolution is unitary. To keep
this unitarity order by order, we choose to sum explicitly
over the Keldysh indices. Hence our algorithm samples
directly |

∑
{ai}W (Cn) detMn(Cn)|. Indeed, performing

the sum over the Keldysh indices only with the Monte-
Carlo Markov chain implies that unitarity is only re-
spected on average (i.e. not for a single configuration),
and in other words relies on the Monte-Carlo to perform
massive cancellations. Obviously the explicit sum comes
at an exponential cost: for each Monte-Carlo move one
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needs to calculate 2n terms. However, we shall see that
the gain in signal to noise ratio more than compensates
for this additional computational cost. In the problems
that we have computed so far, the dynamical sign/phase
problem entirely disappears even for large times. From a
diagrammatic perspective, the summation over Keldysh
indices also implements the automatic cancellation of dis-
connected Feynman diagrams.

(3) We compute the Qn coefficients individually rather
than Q(U). Indeed, once the Qn are obtained, we can
analyze the convergence of the series for Q(U), which
is a separate mathematical problem and has nothing to
do with the Monte-Carlo or any other technique used
to obtain the Qn. Moreover, in continuous-time algo-
rithms, the interaction very often takes the form of a
density-density interaction Ĥint = (n̂↑ − α↑)(n̂↓ − α↓)
and very special values of ασ must be used for the com-
putation not to be plagued by the sign problem25,26. For
instance in Ref. 20 the algorithm fluctuates wildly away
from ασ = 1/2. Here we find that the convergence of
the series for Q(U) depends strongly on the value of ασ.
Note that this is a property of the perturbation series
and therefore independent of the procedure used to ob-
tain the Qn coefficients. In practice, the dependence of
the radius of convergence on the ασ parameters can be
used to access larger values of the interaction: we add
(to Ĥ0) and substract (to Ĥint) an on-site potential to
our Hamiltonian such that the full Hamiltonian is un-
changed but the series acquires a larger radius of conver-
gence. This step allows us to tackle systems away from
the particle-hole symmetry point. It is not linked to the
QMC technique per se but to the choice of the initial
quadratic Hamiltonian around which one performs the
interaction expansion.

II. MODELS AND BASIC FORMALISM

T1, μ1
T3, μ3

T2, μ2

FIG. 1. Sketch of a typical mesoscopic system: a central
interacting region (red) is connected to several (semi-infinite)
non-interacting electrodes (blue) with finite temperatures Ti

and chemical potentials µi.

A. Models

We consider a general time-dependent model for a con-
fined nanoelectronic system connected to metallic elec-
trodes, following the approach of Ref. 27. A sketch of
a generic system is given in Fig. 1. The Hamiltonian
consists of a quadratic term and an electron-electron in-
teracting term,

Ĥ(t) = Ĥ0(t) + UĤint(t) (3)

where the parameter U controls the magnitude of the
interaction. The non-interacting Hamiltonian takes the
following form,

Ĥ0(t) =
∑
i,j

H0
ij(t)ĉ

†
i ĉj (4)

where c†i (cj) are the usual fermionic creation (annihila-
tion) operators of a one-particle state on the site i. The
site index i is general and can include different kinds
of degrees of freedom: space, spin, orbitals. A crucial
aspect is that the number of “sites” is infinite so that
the non-interacting system has a well-defined density of
states (as opposed to a sum of delta functions for a fi-
nite system) while interactions only take place in a finite
region. Typically, the system will consist of a central
part connected to semi-infinite periodic non-interacting
leads. The dynamics of such non-interacting systems is
well known and mature techniques exist to calculate both
their stationary23 and time-dependent properties28. The
interaction Hamiltonian reads

Ĥint(t) =
∑
ijkl

Vijkl(t)ĉ
†
i ĉ
†
j ĉkĉl (5)

In contrast to the non-interacting part, it is confined to a
finite region. We also supposed that the interaction van-
ishes for negative time and is slowly or abruptly switched
on at t = 0. A typical system described by Eq. (3) is a
quantum dot where electrostatic gates confine the elec-
trons in a small, highly interacting, region while the elec-
trodes have high electronic density, hence weak interac-
tions.

The techniques described below are rather general and
will be discussed within the framework of Eq. (3). The
practical calculations however will be performed on the
following Anderson impurity models. Model A corre-
sponds to one interacting site, “0” inside an infinite one-
dimensional chain,

ĤA =

+∞∑
i=−∞

∑
σ

γiĉ
†
i,σĉi+1,σ + h.c.+ εd(n̂↑ + n̂↓)

+ Uθ(t)n̂↑n̂↓ − h(n̂↑ − n̂↓) (6)

where

n̂σ = ĉ†0σĉ0σ (7)
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εd is the level on-site energy, h the (Zeeman) magnetic
field and θ(t) is the Heaviside function so that the inter-
action is switched on at t = 0. The hopping parameter γi
is equal to unity γi = 1 for all sites except γ−1 = γ0 = γ.
We apply a bias voltage Vb between the two (Left and
Right) electrodes which are characterized by their chem-
ical potential µL = Vb and µR = 0 and temperature T .
Model B is very close to model A with additional param-
eters α↑, α↓,

ĤB =

+∞∑
i=−∞

∑
σ

γiĉ
†
i,σĉi+1,σ + h.c+ εd(n̂↑ + n̂↓)

−h(n̂↑ − n̂↓) + Uθ(t) (n̂↑ − α↑) (n̂↓ − α↓) (8)

One easily realizes that the two models are in fact
equivalent in the stationary limit for α↑ = α↓ = α:

ĤB(εd, U, α) = ĤA(εd − Uα,U) + Uα2. However they
have very different large U limit at fixed (small) εd:
model A corresponds to the degeneracy point between 0
and 1 electrons on the impurity (where Coulomb blockade
is lifted) while model B corresponds to the Kondo regime.
More importantly, the perturbation series in powers of U
of the same observable will be different between these
two models, with different convergence radius for fixed
εd. The α parameters have been introduced in Ref. 12,
to improve the sign problem in imaginary-time Quan-
tum Monte-Carlo. An important energy scale for these
models is the (non-interacting) tunneling rate from the
impurity to the reservoirs. It is given by Γ = ΓL + ΓR
with ΓL/R = 2γ2

√
1− (µL/R/2)2.

B. Interaction Expansion

Our starting point for this work is a formal expansion
of the out-of-equilibrium (Keldysh) Green’s function in
powers of electron-electron interactions. This is a stan-
dard step29 which we briefly sketch to introduce our no-
tations.

Using the interaction representation, one defines
ĉi(t) = Û0(0, t)ĉiÛ0(t, 0) where Û0(t′, t) is the evolu-

tion operator from t to t′ associated with Ĥ0. Introduc-
ing the Keldysh index a = 0, 1, one defines the contour
ordering for pairs t̄ = (t, a): (t, 0) < (t′, 1) for all t, t′,
(t, 0) < (t′, 0) if t < t′ and (t, 1) < (t′, 1) if t > t′.
The contour ordering operator Tc acts on products of
fermionic operators A,B,C . . . labeled by various “con-
tour times” t̄A = (tA, aA), t̄B , t̄C . . . and reorder them
according to the contour ordering: Tc(A(t̄A)B(t̄B) = AB
if t̄A > t̄B and Tc(A(t̄A)B(t̄B) = −BA if t̄A < t̄B . The
non-interacting contour Green’s function is defined as

gcij(t̄, t̄
′) = −i〈Tcĉi(t̄)ĉ†j(t̄

′)〉 (9)

where ĉi(t̄) is just ĉi(t), the Keldysh index serving only to
define the position of the operator after contour ordering.
The contour Green’s function has a matrix structure in
a, a′ which reads

gcij(t, t
′) =

(
gTij(t, t

′) g<ij(t, t
′)

g>ij(t, t
′) gT̄ij(t, t

′)

)
(10)

where gTij(t, t
′), g<ij(t, t

′), g>ij(t, t
′) and gT̄ij(t, t

′) are respec-
tively the time ordered, lesser, greater and anti-time or-
dered Green’s functions. Efficient techniques to obtain
these non-interacting objects for large systems will be
discussed in the next section. Last, one defines the full
Green’s function Gcij(t̄, t̄

′) with definitions identical to

the above except that Û0 is replaced by Û, the evolu-
tion operator associated to the full Hamiltonian Ĥ. The
fundamental expression for Gcij(t̄, t̄

′) reads

Gcij(t̄, t̄
′) = −i〈Tce−i

∫
dū UH̃int(ū)ĉi(t̄)ĉ

†
j(t̄
′)〉 (11)

where the integral over ū is taken along the Keldysh con-
tour, i.e. increasing u for a = 0 and decreasing for a = 1.

H̃int(ū) is equal to Ĥint(u) with the operators ĉi, ĉ
†
j re-

placed by ĉi(ū), ĉ†j(ū).

The expansion in powers of U can now be performed,

Gcij(t̄, t̄
′) = −i

+∞∑
n=0

(−i)n

n!
Un
∑
{ai}

(−1)
∑

i ai

∫
du1du2 . . . dun〈TcH̃int(ū1)H̃int(ū2) . . . H̃int(ūn)ĉi(t̄)ĉ

†
j(t̄
′)〉 (12)

Of particular interest to us are one-particle observables (say current or electronic density) which can be directly
expressed in terms of the lesser Green’s function at equal times:

Oij ≡ 〈Û(0, t)ĉ†i ĉjÛ(t, 0)〉 = −iG<ji(t, t) (13)

Note at this stage that the following derivation is presented for the one particle correlator, but can be straightforwardly
generalized to higher correlators.

To proceed, one evaluates the average of the (large) products of creation/destruction operators using Wick theorem,
in a form of the determinant of a (2n+ 1)× (2n+ 1) matrix,

Gcij(t̄, t̄
′) =

+∞∑
n=0

in

n!
Un
∑
{ai}

(−1)
∑

i ai

∫
du1du2 . . . dun

∑
i1j1k1l1

Vi1j1k1l1(u1) · · ·
∑

injnknln

Vinjnknln(un) detMn (14)
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where Mn is given by

Mn =



g<k1i1(ū1, ū1) g<k1j1(ū1, ū1) gck1i2(ū1, ū2) ... gck1j(ū1, t̄
′)

g<l1i1(ū1, ū1) g<l1j1(ū1, ū1) gcl1i2(ū1, ū2) ... gcl1j(ū1, t̄
′)

gck2i1(ū2, ū1) gck2j1(ū2, ū1) g<k2i2(ū2, ū2) ... gck2j(ū2, t̄
′)

... ... ... ... ...
gckni1(ūn, ū1) gcknj1(ūn, ū1) gckni2(ūn, ū2) ... gcknj(ūn, t̄

′)
gclni1(ūn, ū1) gclnj1(ūn, ū1) gclni2(ūn, ū2) ... gclnj(ūn, t̄

′)
gcii1(t̄, ū1) gcij1(t̄, ū1) gcii2(t̄, ū2) ... gcij(t̄, t̄

′)


(15)

and the zeroth order term is gcij(t̄, t̄
′).

Eq. (14) might look cumbersome at first sight, yet it is
a compact expression: provided one knows how to cal-
culate non-interacting Green’s functions (which will be
taken care of in the next section), Eq. (14) expresses
the full interacting Keldysh Green’s function, hence the
physical observables, in terms of integrals and sums of
determinant of known quantities. All that remains is to
find a suitable numerical way to perform those integrals
and sums. For a local interaction present on L sites,
calculating all contributions to order Un in the station-
ary regime corresponds to a numerical complexity of the
order of Lntn where the measurement time t has to be
large enough for the effect of the electron-electron inter-
action to be well established. This can be performed us-
ing standard integration routines for the first few orders
(In section IV we calculate contributions n = 0, 1, 2, 3, 4
for model A) but becomes quickly prohibitive for larger
values of n. For larger orders, a stochastic sampling of
the integrals is compulsory.

To simplify the notations, we introduce the notion of
configuration Cn

Cn = (i1, j1, k1, l1, u1, . . . , in, jn, kn, ln, un) (16)

and note∑
Cn

=

∫
0<u1<···<un<max(t,t′)

du1du2 . . . dun
∑

i1j1k1l1

· · ·
∑

injnknln

(17)

Introducing,

V (Cn) =

n∏
p=1

Vipjp,kplp (18)

we get the following compact expression:

Gcij(t̄, t̄
′) =

+∞∑
n=0

inUn
∑
{ai}

(−1)
∑

i ai ×

∑
Cn

V (Cn) detMn(Cn, {ai}) (19)

where the n! factor has dropped out due to the ordering of
the ui. Note that in the Keldysh formalism the partition

function is unity which translates into

0 =

+∞∑
n=1

inUn
∑
{ai}

(−1)
∑

i ai
∑
Cn

V (Cn) detPn(Cn, {ai})

(20)
where the 2n×2n matrix Pn is identical to Mn with the
last row and column deleted. Actually, a much stronger
statement can be made on Pn: for any n > 0 and con-
figuration Cn, one has,∑

{ai}

(−1)
∑

i ai detPn(Cn, {ai}) = 0 (21)

The proof is straightforward and standard: one first lo-
cates the largest time in the configuration Cn, say un.
When an goes from 0 to 1, the ordering of ūn with re-
spect to the other times is unchanged (ūn is larger than
all the times on the upper part of the contour and smaller
than all those on the lower part of the contour), hence
the contour Green’s functions are unchanged and the ma-
trix Pn is also unchanged. As a result of the (−1)an sign
these two contributions cancel each other.

III. THE NON-INTERACTING GREEN’S
FUNCTION

In order to proceed with evaluating the interaction cor-
rections to observables, the first step is an efficient way
to calculate the various real-time non-interacting Green’s
functions of the problem. For a small dot problem or
a DMFT model, this step is easy. For larger systems,
this question is more delicate, and it has been studied
extensively28 and we briefly summarize the main aspects
here. Note that in Ref. 28, only quantum transport was of
interest so that contributions coming from bound states
could have been omitted. Here however, they will have
to be taken into account properly.

A. General method

Our starting point for calculating non-interacting
Green’s functions is an expression that relates them to
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the (Scattering) wave functions in the system28,

g<ij(t, t
′) = i

∑
α

∫
dE

2π
fα(E)ΨαE(t, i)Ψ∗αE(t′, j)

+ i
∑
n

f(En)Ψn(t, i)Ψ∗n(t′, j) (22)

Here, α labels the various propagating channels of the
leads, ΨαE(t, i) the scattering state at energy E (in the
electrode) and fα(E) the corresponding Fermi distribu-
tion function. n labels a bound state of energy En and
wave functions Ψn. The greater Green’s function g>ij(t, t

′)
is obtained with an identical expression with the Fermi
functions f(E) replaced by f(E)−1. Efficient techniques
for calculating the scattering wave functions ΨαE(t, i)
have been designed so that these objects can be obtained
for large systems ( 105 sites30). The bound states contri-
bution was not considered in Ref. 28 and will be discussed
below. The actual calculations performed in this article
were restricted to a stationary non-interacting system,
where the above expression further simplifies into

g<ij(t− t′) = i
∑
α

∫
dE

2π
fα(E)ΨαE(i)Ψ∗αE(j)e−iE(t−t′)

+ i
∑
n

f(En)Ψn(i)Ψ∗n(j)e−iEn(t−t′) (23)

Here again, the stationary wave functions ΨαE(i) are
standard objects. They are in fact direct outputs of
the Kwant software23 which we use for their calculations.
Once the lesser and greater Green’s functions are known,
one completes the 2×2 Keldysh matrix with the standard
relations

gTij(t, t
′) = θ(t− t′)g>ij(t, t′) + θ(t′ − t)g<ij(t, t′) (24)

gT̄ij(t, t
′) = θ(t′ − t)g>ij(t, t′) + θ(t− t′)g<ij(t, t′) (25)

To obtain those Green’s function numerically, i.e. for
many values of t−t′, one needs to perform the integration
over the energy E many times. In practice, the station-
ary wave functions are calculated once using Kwant and
cached. The integration itself is performed using stan-
dard numerical routines. For the single site model A or B,
the above technique in its full generality can be avoided:
one can simply compute the Green’s function in energy
analytically and perform a numerical Fourier transform.
We have checked explicitely that both techniques provide
identical non-interacting Green’s functions in this special
case.

B. Bound states contribution

The presence of the electrodes in the system is very
important physically: it provides the system with a re-
laxation mechanism. Mathematically, the integral in
Eq. (23) mixes nearby energies so that the resulting
non-interacting Green’s functions decay (and oscillate)

at large times. However, in presence of a large enough
confining energy (far from zero εd parameter in model
A), true bound states can appear in the system. They
have energies outside of the electrode bands and there-
fore cannot hybridize with the plane waves of the elec-
trodes. They satisfy the stationary Schrodinger equation
H0Ψn = EnΨn for the infinite system. Upon integrating
over the electrode degrees of freedom, they satisfy a sim-
pler (yet non-linear) equation for the interacting region
only:

H0Ψn + Σ(En)Ψn = EnΨn (26)

where Σ(E) is the retarded self-energy due to the elec-
trode. For a practical calculation, we do as follows: first
we truncate H0 and keep the interacting region plus a
rather large (yet finite) fraction of the electrodes. We di-
agonalize the corresponding finite matrix and locate the
eigenvalues that are outside the conducting bands of the
electrodes. These eigenvalues are used as initial guess
and we compute the bound states by iteratively solving
Eq. (26) until convergence. Note that there is an easy
check to make sure that one uses a complete basis of the
problem: one must have,∑

α

∫
dE

2π
|ΨαE(i)|2 +

∑
n

|Ψn(i)|2 = 1 (27)

which is not verified if some bound states are forgotten.
Note also that in most of this article, we focus on situa-
tions where there are no bound states in the system. This
can be easily achieved by using leads which have a larger
bandwidth than that of the central system, so that any
bound state that could take place there hybridize with
the continuum of the lead.

IV. ANALYSIS OF THE FIRST TERMS OF THE
PERTURBATIVE SERIES

Knowing how to get the non-interacting Green’s func-
tions, we are now ready to calculate the perturbation
series. A first, rather naive, technique would consist in
calculating the integrals in Eq. (14) using a simple dis-
cretization scheme (Simpson in our case). Only the first
few orders can be obtained that way, at large computa-
tional cost. Nevertheless, it is rather instructive and also
serves as a check for the QMC algorithms discussed in
the next section. We focus on model A and compute the
local charge Q(U) = 〈n↑ + n↓〉 at various orders in Un,

Q(U) =

+∞∑
n=0

QnU
n (28)

Fig. 2 shows the resulting Qn(εd) for n = 0...3. With a
parallel implementation, results for Q4 can also be ob-
tained (not shown) at important computational cost and
Q5 is prohibitive. All these results will be reproduced
using the quantum Monte-Carlo sampling with a tiny
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fraction of the computational time. Note that the sta-
tionary results obtained for Qn do not mean that the se-
ries Eq. (28) is convergent, but only that its coefficients
are well defined.
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FIG. 2. Qn as a function of εd for n = 0, 1, 2 and 3.
The calculations are performed using a direct evaluations of
the integrals in Eq. (14) using the Simpson rule for t = 20,
γ = 0.5 and T = 0.

It is very instructive to have a look at the quantity
which is actually integrated to obtain the Qn. Fig. 3
shows the integrand of Q2 for the 4 values of the pair
of Keldysh indices (a1, a2). We see that this integrand
decays slowly as a function of u1 − u2 and even more
slowly as u1 or u2 get away from the time t where the
charge is measured. The sign of the integrand changes as
one changes the Keldysh indices. Fig. 3 should be con-
trasted with Fig. 4 which shows the same integrand but
now summed over the four Keldysh indices. The inte-
grand shown in Fig. 4 now decays fast as u1 or u2 gets
away from t. This observation can be proven and gener-
alized for higher orders: the integrand decays to 0 when
a group of ui is far from the time t where the physical
observable is measured, Cf. Appendix B. Finally, Fig. 5
shows the same as Fig. 3 but for the matrix P2 associ-
ated with the partition function. Note that for P2, the
sum on the Keldysh indices simply vanishes, so there is
no analogous Figure as Fig. 4 for P2. In the next section,
we will use these observations to design a better sampling
strategy for the Monte-Carlo method.

V. QUANTUM MONTE-CARLO

The direct method of the previous section works in
principle but is limited in practice to very small orders
due to its prohibitive computational cost. Stochastic
methods, such as the Metropolis algorithm, can be ex-
tremely efficient at calculating integrals in high dimen-
sions. In this section, we propose a new route to sample
the interacting series by constructing a Markov process
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FIG. 3. Colorplot of the integrand of Q2 as a function of
the two times u1 and u2 for model A with µL = µR = 0,
εd = 0, T = 0 and t = 10. The four panels correspond
to the 4 possible values of the two Keldysh indices a1 and
a2. The explicit form of the integrand is f(u1, u2, a1, a2) =

−=m(−1)
∑

i ai det M2(u1, u2, a1, a2).
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FIG. 4. Same parameters as in Fig. 3 but the integrand has
now been summed over Keldysh indices. The colorplot repre-
sents f(u1, u2) = i

∑
a1,a2

(−1)
∑

i ai det M2(u1, u2, a1, a2) (f

is real). Note that the integrand is now real, positive and
concentrated around u1 = u2 = t.

in the Fock configuration space (i.e. that not only sam-
ples the integrals themselves but also samples the various
orders n within one process).

A. Sampling strategy

Our algorithm is inspired by the conclusion of the pre-
vious section. It consists in i) sampling directly the phys-
ical quantity to be computed (and not the partition func-
tion, which is Z = 1 anyway in the Keldysh formalism),
and ii) summing explicitly over the Keldysh indices to re-
store unitarity (the symmetry between the two Keldysh
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FIG. 5. Same parameters as in Fig. 3 but the integrand now
uses the matrix P2 instead of M2, i.e. is associated to the par-
tition function instead of an observable. The colorplot repre-
sents f(u1, u2, a1, a2) = −=m(−1)

∑
i ai det P2(u1, u2, a1, a2)

contours) for all configurations. Indeed, it is clear from
the contrast observed between Fig. 4 and Fig. 5 that it
is a much better choice, since the integration region is in
the first case well localized around the time t at which the
quantity is computed. Sampling P2 would result in sam-
pling large regions of the Fock space which are irrelevant
to the actual observable.

We introduce:

M [Cn] ≡ −in+1
∑
{ai}

(−1)
∑

i aiV (Cn) detMn(Cn, {ai})

(29)
which is a real number, as proven in Appendix C. We
construct a Markov process that samples the following
density of probability,

P [Cn] =
1

Zqmc

∣∣UnqmcM [Cn]
∣∣ (30)

where the denominator Zqmc ensures that the probabil-
ity is normalized. We use the notation Zqmc and Uqmc to
show explicitly that the ”partition function” Zqmc and
interaction parameter Uqmc belong to the QMC tech-
nique. In particular, the physical value of the interaction
U can (and will) be distinct from the one(s) Uqmc used
in the Monte-Carlo; also the physical partition function
is Z = 1 in the Keldysh formalism.

Introducing On, the contribution to order Un to the
observable O (see Eq. (13)):

O(U) =
∑
n

OnU
n (31)

the terms of the perturbative expansion are given by

On/Zqmc =� δpn
1

Upqmc

M [Cp]
|M [Cp]|

� (32)

where � · · · � stands for the average over the proba-
bility P [Cn]. All is left is to construct a Markov process

that samples this distribution. A key aspect of the ap-
proach is that On is sampled for several (at least two)
values of n simultaneously: in the average � · · · �, n
varies between nmin and nmax. Introducing

cn =
∑
Cn

|M [Cn]| (33)

we find that the probability pn to be in the order n (in
practice the fraction of the Monte-Carlo spent in config-
urations at order n) is

pn = cnU
n
qmc/Zqmc (34)

The normalization of the total probability
∑
n pn = 1

provides the partition function in terms of the cn, Zqmc =∑
n cnU

n
qmc. Note that the cn are by definition indepen-

dent of the QMC technique used to calculate them and
in particular of the value of Uqmc. c0 is simply given by
the non-interacting value of the observable: c0 = |g<ij(0)|.
The last item to introduce is the probability qn for the
fluctuating sign in Eq. (32) to be +1 (and (1− qn) to be
−1). Note that M [Cp]/ |M [Cp]| = ±1 is always real (Cf
Appendix C) so that we only average fluctuating signs,
not phases. We note qn = (1 + sn)/2 so that sn is the
average sign at a given order. sn and pn are the di-
rect outputs of the computations. With these notations,
� δpnM [Cp]/ |M [Cp]| �= snpn and one finally arrives at

On = cnsn (35)

and

cn+1

cn
=

1

Uqmc

pn+1

pn
(36)

which relates the observable (On) to the output of the
computations (pn, sn). As always, Monte-Carlo com-
putations only provide ratios between quantities, see
Eq. (36). Here, we use our knowledge of the non-
interacting observable (hence of c0) to obtain the cn and
finally the On recursively. Eq. (36) needs to be applied
for all n up to the maximal order needed, but its evalu-
ation for various n needs not to be done within the same
QMC run.

B. Moves and detailed balance

Before we can actually perform calculations, we are left
with a last task: designing a random walk that actually
samples Eq. (30) with n varying between nmin and nmax.
This step is very similar to the construction of other
continuous-time QMC. We introduce two sorts of moves:
the moves where we increase n by one unit by adding one
vertex and the moves where one vertex is deleted. The
algorithm to obtain the configuration Cn(i + 1) at step
i+ 1 from the configuration Cn(i) goes as follows:
(i) Move selection. We choose the move n→ n+ 1

(n → n − 1) with probability p↑ (p↓) with p↑ + p↓ = 1.



9

When n = nmin (nmax) we have p↑ = 1 (p↓ = 1) otherwise
we typically choose p↑ = p↓ = 1/2.
(ii) Move n → n + 1. We select un+1 uniformly in

[0, t]. We select (in+1, jn+1, kn+1, ln+1) uniformly among
the NV different terms Vijkl. The overall probability to
propose the move is

W↑dun+1 =
p↑dun+1

tNV
(37)

(iii) Move n → n − 1. We select the vertex to be
removed uniformly between [1 . . . n]. The overall proba-
bility to propose the move is

W↓ =
p↓
n

(38)

(iv) Detailed balance. We choose the acceptance
probability q↑(n) and q↓(n) so that it satisfies the detailed
balance equation

W↑(n)dun+1q↑(n)P [Cn]

n∏
i=1

dui =

W↓(n+ 1)q↓(n+ 1)P [Cn+1]

n+1∏
i=1

dui (39)

Using the Metropolis algorithm this leads to

q↑(n) = min

(
W↓(n+ 1)P [Cn+1]

W↑(n)P [Cn]
, 1

)
(40)

q↓(n) = min

(
W↑(n− 1)P [Cn−1]

W↓(n)P [Cn]
1

)
(41)

Note that, as usual in continuous-time quantum Monte-
Carlo methods12–14,31, the factor dun+1 is present on
both sides of the detailed balance equation and even-
tually drops, so that the Monte-Carlo can be performed
directly in the (time) continuum.

C. Remarks

We now have a complete practical scheme for calculat-
ing many-body perturbation to a given observable. Be-
fore we embark in concrete examples, let us make a few
remarks.

1. Comparison with the sampling of the partition function

Our sampling strategy should be contrasted with the
usual approach, used for instance in Ref. 20, which has
its origin in the imaginary-time techniques and where the
(density of) probability P [Cn, {ai}] to be in the configu-
ration Cn with the Keldysh indices {ai} is given by

P [Cn, {ai}] =
1

Zqmc

∣∣UnqmcV (Cn) detPn(Cn, {ai})
∣∣ (42)

i.e. one samples the matrix Pn (instead of Mn) and one
samples the Keldysh indices (instead of summing on them
exactly and explicitely). In this scheme, an observable O
(say the charge Q, possibly resolved in spin) is given by

O(Uqmc) = Zqmc � (−1)
∑

i ai
detMn

|detPn|
� (43)

while the partition function Z = 1 is given by

1 = Zqmc � (−1)
∑

i ai
detPn
|detPn|

� (44)

Constructing a Markov process that samples Eq. (42)
can be done similarly to the construction presented in
the previous subsection. The observable O(Uqmc) can be
estimated by taking the ratio of the above two equations.

Although this approach has shown some success, one
can make the following remarks.

(1). The sign of detPn can fluctuate strongly so
that the statistical average in Eq. (44) is very small and
1/Zqmc suffers from a very bad signal to noise ratio. This
is the sign problem that plagues Quantum Monte-Carlo
techniques for fermions. Eq. (21) indicates that this prob-
lem is most probably worse in presence of the Keldysh
indices where one expects wildly fluctuating signs. This
is shown by the data in Fig. 5.

(2). It is not guaranteed that the most probable con-
figurations sampled by Eq. (44) are also the ones that
contribute most to O(Uqmc). On the contrary: the de-
terminant of Pn depends only on the relative positions of
the ui with respect to the others (it is essentially a sum of
terms of the form gcij(u1−u3)gckl(u2−u3) . . . gcpq(un−u6))
and not at all of t. The integrals contributing to O(Uqmc)
on the other hand decay when the ui get away from t.
Hence for large times, the above scheme samples values
of the ui very far from t which therefore contribute very
little to the actual observable. This was shown explicitly
in Fig. 3, Fig. 4 and Fig. 5.

(3). The signal to noise ratio usually deteriorates
rapidly with t in these algorithms making it difficult to
reach the stationary regime.

2. Role of the explicit sum over the Keldysh indices

The sampling of Z = 1 discussed above does not pre-
serve the symmetry between the two parts of the Keldysh
contour for a given configuration (it preserves it in aver-
age, as it should): in the Keldysh formalism, one starts
from a non-interacting density matrix, switches on the in-
teraction for some time t, measures the observable, then
unwinds the effect of the interaction until one is back to
the original density matrix. Here however, a given config-
uration might have a few Keldysh indices on one branch
and the rest on the other, meaning that a typical configu-
ration does not enforce the symmetry of Keldysh indices,
which reflects unitarity. From a different perspective,
the corresponding expansion includes all the Feynman
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diagrams, including the disconnected diagrams although
they have a vanishing contribution to the observables.

In our scheme in contrast, we explicitly sum over all
Keldysh indices. Eq. (21) indicates that all contributions
from disconnected diagrams explicitly drop from the cal-
culation. We calculate only connected diagrams which
should be advantageous. From a technical perspective,
one finds that the quantity M [Cn] is always real (not
complex, see Appendix C) so that one averages signs in-
stead of phases. One expects that the resulting potential
sign problem is milder than the so-called phase problem
which originates from averaging a random phase.

However, our scheme has an obvious drawback: one
evaluation of M [Cn] corresponds to the calculation of 2n

determinants, so that this algorithm complexity now in-
creases exponentially with the maximum order n. We
show below results for up to n = 15 and it is reasonable
to expect that one could calculate up to n = 20. Usual
algorithms to calculate determinants have complexities
which scale as n3. We show in appendix D that the fast
updates of the determinants (with complexities that scale
as n2) can easily be extended to the present case using
Gray code, so that the overall complexity of our algo-
rithm scales as 2nn2. Actually, ”mirror” Keldysh con-
figurations have equal contributions (see Appendix C) so
that only 2n−1 configurations need to be included. Over-
all, we shall see that the additional computational com-
plexity is more than compensated by the important gain
in signal to noise ratio.

3. Statistical errors and the sign problem

In practice, we calculate the moments On sequentially
with a separate QMC computation for each value of n
(typically with nmin = n − 1, nmax = n or nmin = 0,
nmax = n) so that one gets a fully controlled (optimally
flat) histogram of the various orders. Starting from c0
(known without error), we iteratively compute cn from
different runs that use different interaction strengths Un,

cn
cn−1

= An ≡
pn(Un)

Unpn−1(Un)
(45)

One can use for instance Un such that pn = pn−1 = 1/2
(this is always possible but not strictly necessary as long
as pn/pn−1 remains of order unity).

Note that a naive scheme where one would try to eval-
uate all the values of cn in a single run would run into an
artificial difficulty: in a single run, the histogram is usu-
ally sharply peaked around one value of n and one cannot
get a good statistics both for n = 1 and n = nmax. A
small statistics in, say n = 1 leads to a large error in the
estimate of p1 which further corrupts the evaluation of
all cn, hence On.

Coming back to our scheme, the error made on the
estimate of An is bounded by δAn/An ≤ 2/

√
N# where

N# is the number of independent points. Hence we find

that the (one standard deviation) error on cn is bounded
by

δcn
cn
≤ 2n√

N#

(46)

which can be controlled to arbitrary precision provided
n �

√
N#. Hence, the calculation of the cn, which in-

volves only positive numbers, can be done with extremely
good accuracy.

The limitation to the precision – the sign problem –
takes its origin in the average sn of the sign contained
in Eq. (32). Note that in contrast to other techniques,
this sign is here in the numerator and is not present in
the denominator, i.e. a small sign does not necessarily
mean a sign problem: it can simply mean a small value
of On. This analysis is close to e.g. Refs 8–11. The error
made on the sign sn is given by a Bernoulli law (+1 with
probability qn, −1 with probability 1−qn), hence is given

by 2
√

[qn(1− qn)]/N# which is always smaller than

δsn ≤
1√
N#

(47)

(the upper bound is reached when the sign sn becomes
small). Putting everything together, On = cnsn implies
that |δOn/On| = δsn/|sn|+ δcn/cn and we arrive at the
relative error, ∣∣∣∣δOnOn

∣∣∣∣ ≤ 1

|sn|
√
N#

+
2n√
N#

(48)

In this form, it seems that the smaller the sign, the larger
the error, hence the sign problem. However, one must
remember that while cn and sn depend on the QMC al-
gorithm, their product cnsn = On does not, so that the
error can be recast into∣∣∣∣δOnOn

∣∣∣∣ ≤ cn

|On|
√
N#

+
2n√
N#

(49)

In this second form, it becomes apparent that a bad sign
problem (small sn) is equivalent to a bad sampling choice
which leads to a large cn. The behaviour of the error is
therefore intimately linked with the growth of cn with
n which itself depends strongly on the actual probabil-
ity sampled. For instance, if one samples the sum over
Keldysh indices (instead of summing explicitely over the
indices as we do), one gets identical On but much larger
cn and consequently much smaller sn. In fact the cn
would increase by more than a factor 2n so that the
overall method would be much less efficient than the one
proposed here. The global relative error therefore con-
tains three contributions, which reflect respectively the
total computing time (1/

√
N#), the intrinsic physics of

the problem (On) and the quality of the choice of the
sampling procedure (cn). From the above analysis, the
colorplots shown in Fig. 3, Fig. 4 and Fig. 5 take a differ-
ent meaning. Indeed, one can see that c2 (the integral of
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the function displayed in Fig. 4) is rather small: the func-
tion decays rather quickly when u1, u2 get away from t. If
on the other hand we have chosen to sample the Keldysh
indices in addition (as in the standard schemes), then c2
would have been the sum of the integral of (the absolute
value of) the different panels of Fig. 3. One immediatly
realizes that the signal to noise ratio would have been
much smaller.

4. Convergence of the interacting series

Our approach separates the calculation of the On from
the study of (the convergence of) the series O(U) =∑
nOnU

n itself. This could be used to obtain the full
U dependence of the observable, but more importantly,
it allows one to disentangle physical aspects (for instance
the convergence or lack of of the series) from technical
ones (the calculation of its elements). The convergence of
the series will be discussed next. In principle, one could
use various resummation procedures such as Pade ap-
proximant, Lindelöf analytical continuation and/or Borel
resummation in order to extrapolate the series from its
first coefficients. An example of such a procedure is given
in the appendices.

It is important to note already at this stage that the
parameter α, as introduced in model B, plays a crucial
role in the algorithms sampling the partition function at
equilibrium12 as only special values of α are free of the
sign problem. It is also known that the typical pertur-
bation order in those algorithms is strongly reduced by
using the best value of α. We shall find in the next sec-
tion that the parameter α has a drastic influence on the
convergence of the series

∑
nOnU

n but not on the actual
calculation of the On itself.

VI. FIRST RESULTS: ANALYSIS OF THE
SERIES CONVERGENCE

A. Bare results

As a first application, we compute the interaction cor-
rections to the charge Q on the impurity in model A.
Fig. 6 shows the Qn for n up to n = 15 as well as the
corresponding cn and sn. We find that the magnitudes
of the Qn do not appear to decrease with n but rather re-
main of order unity |Qn| ≈ 1. This implies (Hadamard’s
theorem) that the series has an apparent convergence ra-
dius of order unity (apparent because it relies on extrap-
olating the behaviour of the first known coefficients to
large orders). We can already notice that the curve for
model B (α = 1/2) has a very different behaviour with
a fastly decreasing cn hence Qn; this aspect will be dis-
cussed later in the text. Fig. 7 shows the truncated
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FIG. 6. QMC results for model A at γ = 1/2, T = 0 and
t = 10 for εd = 0 (green squares) and εd = −0.5 (blue circles),
as a function of the order n. Red diamonds: model B with
γ = 1/2, T = 0 and t = 10 for εd = −0.5 and α = 0.5. Top
panel: Qn, central panel: cn and bottom panel: average sign
sn.
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FIG. 7. QMC results for model A at γ = 1/2, T = 0 and
t = 10. Top panel: charge Q(N,U) as a function of U , for
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(red), U = 0.6 (black) and U = 0.8 (blue).

series

Q(N,U) =

N−1∑
n=0

QnU
n (50)

as a function of U (upper panel) and 1/N (lower panel).
We find a nice convergence for U < U∗ ≈ 0.6 but a diver-
gence beyond, i.e. we cannot access the physics beyond
U = 0.6 (U ≈ Γ/2) by simply summing the series. This
divergence has nothing to do with the QMC technique
which is just a way to calculate the Qn - it belongs to
the physics of the problem. In the following, we will dis-
cuss two ways to bypass this problem: performing the
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interaction expansion from a different starting point and
resumming the series by moving its singularities away
from the expansion point.

B. Hartree-Fock series

Before going on with the QMC results, let us analyse a
simpler, approximate, series which is obtained from the
Hartree-Fock approximation (which reduces to Hartree
for model A). This series will be useful in identifying a
possible source for the observed apparent radius of con-
vergence. Introducing,

gR(E) =
1

E − εd − γ2(E + i
√

4− E2)
(51)

the Fourier transform of the retarded non-interacting
Green’s function gR00(t), the non-interacting charge at
equilibrium and T = 0 takes the form

Q0 =
1

π

∫ 0

−2

dE Im gR(E) (52)

In the Hartree approximation, one replaces the on-
site energy by its mean-field value. The fully self-
consistent Hartree would be defined as QHF (εd, U) =
Q0[εd + UQHF (εd, U)]. Here however, we restrict our-
selves to summing the ladder of tadpole diagrams which
is sufficient to illustrate our point: QHF (εd, U) =
Q0[εd + UQ0(εd)]. The corresponding series is given by
QHF (U) =

∑
nQ

HF
n Un with

QHFn =
Qn0
π

∫ 0

−2

dE Im [gR(E)]n (53)

Note that the first two moments are the exact ones:
QHF0 = Q0 and QHF1 = Q1. On the other hand, from
the above construction Eq.(51), we find that QHF (U) has
branch cuts in the complex plane, given by

E−εd−UQ0(εd)−γ2(E±i
√

4− E2) = 0 for −2 ≤ E ≤ 0
(54)

so that one expects the series in powers of U to have a
finite radius of convergence given by the branch closest
to U = 0, i.e. equal to unity (see the inset of Fig. 8). In-
deed, Fig. 8 shows an example of the partial sums which
diverges around U = 1. This is very reminiscent to what
we have found for model A. This calculaiton illustrates in
a simple and tractable approximation that a finite radius
of convergence is due to the existence of singularities or
branch cuts in the complex plane.

C. Using a different non-interacting problem

In this section, we show that by playing with the α
parameter, one can greatly enhance the radius of con-
vergance of the series hence access correlated regimes.
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Im
 U

FIG. 8. Hartree-Fock series of model A as a function of U :
Exact curveQHF (U) (thick line) and partial sumsQHF (N,U)
for N = 10, 20, 30, εd = 0 and γ = 1/2. The series has a
divergence at U = 1. The inset shows the analytical structure
of QHF (U) in the complex plane (Re U, Im U): branch cut of
QHF (U) (thick magenta line) and convergence radius of the
Hartree-Fock series (dashed line).

Instead of starting the perturbation from the U = 0
Hamiltonian, one can incorporate the mean-field treat-
ment into the non-interacting Hamiltonian so that only
the fluctuations of the interaction need to be taken into
account in the perturbation. In fact, one can even push
this idea further and add an arbitrary quadratic Hamil-
tonian to Ĥ0(t) and remove it accordingly from Ĥint(t).
The idea is to start with one-body propagators as close
as possible to the interacting ones, so that the role of the
perturbation becomes very weak. Within our current im-
plementation we can easily add an on-site potential δεd
to the non-interacting Hamiltonian and use α = δεd/Ū
in the perturbation where the new parameter Ū is our
targetted value of the interaction (see the definition of
model B in Eq. (8)). For U = Ū , one recovers the orig-
inal model A for t > 0, hence the corresponding results
in the long-time limit.

The α parameters are exactly the same as the ones
used in the interaction expansion continuous-time quan-
tum Monte-Carlo introduced by Rubtsov12, in equilib-
rium. In that algorithm, it was shown12 that the sign
problem strongly depends on the value of α. It also re-
duces the average order of perturbation of these QMC
methods Here, we will now show that the apparent ra-
dius of convergence of the interaction expansion strongly
depends on these α parameters, and we will use this to
our advantage.

The technique is illustrated in Fig. 9 first for a value of
U that could be reached with the initial approach (U =
0.25) and secondly for a value that could not be reached
(U = 1). We find that this approach works remarkably
well: not only we can recover the former results, but we
can also go to regimes that were not accessible before.
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As a self-consistency check, we find that the results do
not depend on δεd for U = Ū . Of course a disadvantage
of this approach is that one must perform a separate
computation for each value of U needed.
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FIG. 9. Role of the non-interacting Hamiltonian around
which is done the expansion; Q(U) at εd = 0 with an extra
potential δεd in the non-interacting Hamiltonian and a corre-
sponding compensating term α = δεd/Ū in the perturbation.
The green line corresponds to the original series with δεd = 0
in its regime of convergence. All curves for γ = 1/2, T = 0
and t = 10.

The faster convergence of the new series can be seen
in Fig. 10 where we compute the corresponding series Qn
versus n (upper panel) as well as the convergence of the
partial sum Q(N,U = Ū) versus 1/N (lower panel). We
find that only 2 or 3 orders are sufficient to obtain the
exact result provided one uses a ”starting point” close
enough to the final solution. A pragmatic way to per-
form the calculation is therefore to optimize the value
of δεd so that the corresponding Qn decreases as fast as
possible. We collect the final curve Q(U) for model A
at εd = 0 (note that other values are equally accessi-
ble) in Fig. 11 together with the original expansions. We
find that Q(U) decreases monotonously from Q(0) = 1/2
to Q(U � 1) ≈ 1/4. For U > 2 the model is already
close to its large U limit and fluctuations of charge are
small. Fig. 11 is an important result of this paper and
establishes that the regime of strong interaction can be
reached from a rather naive perturbative expansion. We
note that the regime shown in Fig. 11 is a quite difficult
one for the technique. Indeed raising either the temper-
ature and/or a bias voltage will result in Green’s func-
tions that decay rapidly with time (exponentially as op-
posed to the algebric decay found at zero temperature)
and therefore in smaller cn and better signal to noise ra-
tio in the calculations. Fig. 11 also includes a separate
calculation performed with an hybridization QMC tech-
nique in imaginary time (dashed line), obtained with the
algorithm introduced in Ref. 13, implemented with the
TRIQS package24. We find a perfect match between the
two techniques which serve as a validation of our tech-
nique and its implementation.
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FIG. 10. Top panel: absolute value of the charges Qn for
different values of α,δεd, at εd = 0, γ = 1/2, T = 0 and t = 10:
α = δεd = 0 (Black), α = δεd = 0.5 (Blue), α = δεd = 0.6
(Green), α = δεd = 0.7 (Red). Bottom panel: corresponding
dependence of the charge Q(N,U = 1) as a function of 1/N .
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FIG. 11. Charge Q(U) for model A with εd = 0, γ = 1/2,
T = 0 and t = 10. Red symbols correspond the use of α
parameters (different symbols for the same value of U corre-
spond to different δε or α). Thin lines correspond to partial
sum with the bare technique (α = 0): Q(N = 6, U) (cyan),
Q(N = 7, U) (green) and Q(N = 8, U) (blue). Dashed line:
Benchmark calculation performed with hybridization QMC in
imaginary time. Blue squares: extrapolation using the homo-
graphic technique, see sectionVI D.

D. Resummation technique: moving the
singularities away

Let us go back to our initial series for model A (with
α = 0). Our Hartree-Fock analysis suggests that the
source of divergence lies in the complex plane (magenta
line in Fig. 8). However, the Anderson model does not
display a transition (hence no singularity) on the real
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axis for U , which suggests that one should be able to
analytically continue our result for U > 1.

There is a large body of literature dedicated to the
study of diverging or even asymptotic series, see e.g. Refs
11, 32, and 33 and various techniques can be used to
extract useful physical information from them. In Ap-
pendix E, we use the Lindelöf method to extrapolate the
series beyond the radius of convergence, for the charge
Q(U), and show that we can easily get the correct re-
sult for e.g. U = 1.5. Alternatively, one could use Borel
resummation followed by a Pade fit (not shown). The
Borel series, like the Lindelöf method, allows one to go
beyond the initial radius of convergence, but not much
beyond. It is also rather impractical to do in a controlled
way.

Here, we use an alternative route known as the Eu-
ler transform34. The idea is to perform a meromor-
phic transformation W (U) that sends the singularities
away from the expansion point while bringing the region
of interest (real and positive Us) closer to zero (with
W (0) = 0). As an illustration, we choose the homo-
graphic transform

W (U) =
bU

U − a
(55)

The method is performed in two steps. First, one obtains
the expansion for the inverse U(W ) of W (U) (defined
as U [W (U)] = U): U(W ) = U1W + U2W

2 + U3W
3 . . .

and one constructs the (truncated) series for Q(W ) ≡
Q[U(W )]. The series Q(W ) =

∑
n Q̄nW

n has a radius of
convergence RW which may be much larger than the ini-
tial series if a is close enough to the singularities of Q(U).
In a second step, one evaluates Q(W ) for W = W (U).
If RW > W (U) the result will be convergent so that
the figure of merit for this transformation is the ratio
RW /W (U). In practice, RW is obtained by performing a
simple exponential fit for the Q̄n ∝ R−nW (see the inset of
Fig.12 for an example). It is also very appealing concep-
tually and controlled by the figure of merit RW /W (U)
(in practice RW /W (U) ≈ 1.5 gives very precise results
with only 7-8 orders).

Fig.12 gives an example of the resummation for U = 6
(much beyond the radius of convergence of the initial
series). We find that the figure of merit reaches a rather
high value RW /W (U) ≈ 2 which allows one to obtain
the exact result with only a few orders. The increase
of the radius of convergence is actually quite dramatic.
In the lower panel we plot the actual result obtained as
a function of a (the results do not depend on b). We
find that, in the region where the figure of merit is high
enough, one observes a nice plateau at the correct value.
We have also reported the full extrapolated Q(U) curve
in Fig. 11 (blue squares) which is in very good agreement
with our reference calculation. This method has two clear
advantages over other resummation methods. First, the
technique is controlled with the figure of merit. Second it
can, in principle, works even in the strong coupling limit.
For the case studied here, the point U = ∞ is mapped

onto W = b = 6 which is well within our convergence
radius RW (a = −0.25) ≈ 12 so that we can compute
Q(U =∞) ≈ 0.18.
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FIG. 12. Homographic transformation of the model A series
for Q(U) (same data as Fig.7) with b = 6. Upper panel: Ef-
fective radius RW (a) (ful black line) and homographic trans-
formation W (a, U = 6) (dashed red line) as a function of
position of the singularity a. Bottom panel: resummation re-
sult Q(U = 6) as a function of a. The dashed line indicates
the exact result Q ≈ 0.22. Inset: Q̄n as a function of n for
a = −0.25 (squares) and the initial series (circles).

VII. MORE RESULTS: CURRENT AND
MAGNETIZATION

In the previous section, we have computed the charge
of the impurity, a quantity that misses the important
physics associated to spin fluctuations, the Kondo effect.
The Kondo effect in quantum dots has been extensively
studied and we refer to Ref. 35 and 36 for an account of
the literature. Here, we merely aim at illustrating our
method with calculations of current versus voltage and
magnetization versus field characteristics.

A. Current

In Fig. 13, we present some results obtained for the
current-voltage characteristics of an Anderson impurity
connected to two electrodes.

Fig. 13 shows the resulting I(Vb) characteristics for two
values of εd: εd = 0 which corresponds to the particle-
hole symmetric case where the non-interacting problem is
at resonance; and εd = −0.5 which breaks this symmetry
and is non-resonant. We also indicate the perfectly trans-
mitting limit I = Vb with the orange dashed line. The
εd = 0 case is already very interesting: at small bias, the
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transmission probability is unity because we are exactly
at the resonance frequency of the impurity. When one
increases the interaction strength, we also expect perfect
transmission but for a totally different reason: the origi-
nal resonance is now shifted to negative energies (−0.6 in
this instance) but a new one, the Kondo resonance, starts
to develop at the Fermi level (Vb ≤ TK). In practice, we
find that the In are extremely small at small voltages so
that the current is unaffected by the interaction. It is
only at higher bias than interaction becomes relevant. It
is interesting to note that this ”Kondo ridge” which is
a notoriously difficult regime appears here to be one of
the most tractable ones. The off-resonant case εd = −0.5
corresponds to a situation where the non-interacting cur-
rent is much smaller than the interacting one so that the
perturbation series must build the Kondo resonance. We
find that it does indeed build it as one recovers perfect
transmission at low bias. Up to the accuracy of the cal-
culations (the error bars are of the order of the symbol
sizes), the result shown in Fig. 13 is an exact solution
of the non-equilibrium Anderson model, in its stationary
regime, with and without particle-hole symmetry.
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FIG. 13. Current-voltage characteristics I(Vb) for model B
with α = 0.5, γ = 0.5 and T = 0. The current is in units of
energy time e/h. Black line and black circles: particle-hole
symmetric point εd = 0 for U = 0 and U = 1.2 respectively.
Red dot-dashed line and red squares εd = −0.5 for U = 0
and U = 1.2. Dashed line: perfect transmission I = Vb.
Inset: convergence of the results as a function of 1/N where
N is the total number of moments included for Vb = 0.3, εd =
−0.5, U = 1.2 (red squares) and Vb = 0.2, εd = 0, U = 1.2
(black circles)

Let us now analyze a bit further this calculation and
present In, the various orders of the expansion of the
current in powers of U . It is interesting to study how In
converge to the stationary value with time. Fig. 14 shows
the first seven moments In (rescaled by Un with U = 3

for visibility of the higher moments) as a function of time
t. At short time, the moments grow typically as In ∝ tn
which simply reflects the fact that In is an n-dimensional
integral. After one or two oscillations, they reach their
stationary value for roughly Γt > 10 but one notices that
the higher orders converge significantly slower than the
lower orders. Simulations for large time are not partic-
ularly harder than for short time except for one small
difficulty: our insertion move has a flat distribution in
the interval [0, t] but only times close enough to t actually
contribute to the moments, so that the acceptance proba-
bility for these moves eventually drops when t increases.
This issue could be circonvaluated by reweighting the
proposed moves around t. Fig. 15 and Fig. 16 show re-
spectively the corresponding evolution of the signs sn and
the weights cn as a function of time t. The signs remain
rather large (the smallest value is s6 = 0.025 asymptoti-
cally) and are not a limitation for the calculations. The
decrease of the In with n essentially comes from the cor-
responding decrease of the cn. These Monte-Carlo com-
putations are essentially free of the sign problem. The
real limitation of the results presented in this section is a
physical one: the apparent radius of convergence (in U)
of the series appears to be finite, of the order of 1.5 − 2
for the current.
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FIG. 14. First 6 moments of the currents InU
n versus time

t. The moments have been rescaled with U = 3 for visibility.
Model B with α = 0.5, εd = 0, γ = 0.5, T = 0 and Vb = 0.5.

B. Magnetization

In Fig. 17, we plot the magnetization Mz = (Q↑ −
Q↓)/2 as a function of the magnetic field h for various
strength of the interaction. At small field one expects
Mz ∝ h/TK where the Kondo temperature TK is the
characteristic scale of the Kondo effect. We do observe
indeed a sharp rise of the spin susceptibility when we
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FIG. 15. First 6 moments of the sign sn associated with
the currents In versus time t. Model B with α = 0.5, εd = 0,
γ = 0.5, T = 0 and Vb = 0.5. Assymptotic s6 = 0.025.
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FIG. 16. First 6 moments of the weight cn associated with
the currents In versus time t. Model B with α = 0.5, εd = 0,
γ = 0.5, T = 0 and Vb = 0.5.

switch on the electron-electron interaction. As a consis-
tency check, the full lines in Fig. 17 reproduce the results
obtained in Ref. 37 by solving the Bethe-ansatz equa-
tions. We find a remarkable agreement between the two
(supposingly exact) techniques. Note that the agreement
is not supposed to be perfect as the Bethe-ansatz equa-
tions assume the universal regime Γ � D (D = 4 is the
band width) while the QMC calculations are performed
for the microscopic model with a finite value Γ = 1/4.
Note that, as in the previous section, the results have
been calculated at zero temperature and bias voltage
which is the most difficult situation. Indeed, at finite
temperature the non-interacting Green’s function decays
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FIG. 17. Zero temperature magnetization. Mz = (Q↑ −
Q↓)/2 as a function of magnetic field h for model A with
εd = −0.25, γ = 1/4, T = 0 and t = 50. Lines are analytical
results (from Bethe-ansatz Ref.37), in particular red line is
at U = 0, black line at U = 0.7Γ (Γ = 4γ2 = 1/4), blue
line at U = 1.5Γ, dashed lines with points are results from
QMC. The actual calculations were made with model B with
α = 0.5 (h ≥ 0.025) and α = 0.8 (h < 0.025), while enforcing
εd = αU − 0.25.

faster with time, which ensures a faster convergence of
the results with time and consequently smaller values of
cn. Following the strategy discussed in the previous sec-
tion, the calculations are performed with a finite value of
α.

VIII. DISCUSSION

In summary, we have presented a general purpose al-
gorithm to calculate systematically the electron-electron
interaction corrections to the physical observables of a
generic nanoelectronic circuit. We validate the approach
using the non-equilibrium Anderson model and find that
we can calculate the first moments (up to n = 15 in this
work using a recent laptop computer) in the stationary
regime and without being plagued by the appearance of
the dynamical sign problem. In a second step, one evalu-
ates the interacting series whose radius of convergence is
a priori unknown. Our results indicate that this radius
of convergence is strongly affected by the mean-field part
of the interaction (role of the α parameter).

There are many aspects left to future work. Clearly,
one wants to apply the technique to other, larger sys-
tems such as a quantum point contact (”0.7” anomaly)
or a quantum dot embedded in an interferometer. The
technique could also be directly generalized to address
several particle species (fermions or bosons), hence to
study models coming from, e.g. circuit QED. Another
route is to design techniques to obtain series with larger
radius of convergence in order to reach more correlated
regimes. This could be achieved using standard series
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analysis tools (Borel resummations...) but also by com-
puting the perturbative series for other quantities, such
as the self-energy. Last, one needs to develop the mea-
surement of more complex objects, such as the Green’s
function, in order to be able to use the present technique
for self-consistent schemes like DMFT or cluster DMFT.
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Appendix A: matrix Mn for density-density
interaction

In this Appendix, we study the form of the matrix Mn

(defined in Eq. (15)) when the electron-electron interac-
tion takes the form of a density-density interaction:

Ĥint(t) =
∑
ijkl

Vij(t)[ĉ
†
i ĉi − αi][ĉ

†
j ĉj − αj ] (A1)

This form is more restrictive than the one studied in the
main body of the manuscript. However, it allows for
some optimizations as well as the inclusion of the one-
body correction (proportional to αi) which have proved
to be important and is sufficient for the applications to a
single interacting site shown in this article. The result is
very simple: the matrix Mn must be replaced by Mn+Ln
where the diagonal matrix Ln consists of the αi:

Ln = −i


αi1 0 0 0 . . . 0
0 αj1 0 0 . . . 0
0 0 αi2 0 . . . 0
0 0 0 αj2 . . . 0
. . . . . . . . . . . . . . . 0
0 0 0 0 . . . 0

 (A2)

This formula is from Ref. 12. We present here a simple
recursive proof for completeness. We need to evaluate
averages of the form

Λ = 〈(ĉ†1ĉ1 − α1)(ĉ†2ĉ2 − α2) . . . (ĉ†N ĉN − αN )〉 (A3)

When all the αi vanish, the above average is equal to
Λ = det Mn. Let us now switch on α1. The previous
result becomes Λ = det Mn − α1det M′n where the ma-
trix M′n is identical to Mn with its first line and row
removed. Equivalently, M′n can be replaced by a ma-
trix Rn of the same size as Mn with the first column
filled with (α1, 0, . . . , 0) and all the other columns are
those of Mn: one immediatly checks that upon develop-
ing the corresponding determinant with respect to the

first column, one finds det Rn = α1det M′n. Rn and Mn

having all their columns equal but the first one, they can
now be put together into one determinant of a single ma-
trix Λ = det Mn − det Rn = det [Mn + Ln] (which is
equal to Mn except for its upper corner shifted by −α1).
This procedure can be continued with α2, α3. . . until no
αi are left which proves the above statement. Note that
in the particular case considered in this work, the ma-
trix Mn + Ln is block diagonal with respect to spin so
that its determinant factorizes into two smaller determi-
nants. This can be used for a faster calculation of the
said determinants.

Appendix B: Clustering property of the sum over
Keldysh indices

In this section, we show that summing over the
Keldysh indices leads to a clustering property, i.e. that
when the times of the integration in Eq. (14) are far
from the time t where the observable is computed, the
integrand decays. Let us consider Eq. (15), in the case
where e.g. u1, . . . , up are far from t, e.g. close to t −∆t
and up+1, . . . , un are close to t. We study the case
where ∆t becomes large. Let us denote up+1, . . . , un, t
by v1, . . . , vn−p to simplify the notations. Then the ma-
trix of Eq. (15) has a block structure of the form:

Mn =

(
A B
C D

)
(B1)

where

Ai,j ≡ g(ūi, ūj) Bi,m ≡ g(ūi, v̄m)

Cl,j ≡ g(v̄l, ūj) Dl,m ≡ g(v̄l, v̄m) (B2)

where i, j = 1, . . . , p, and l,m = 1, . . . n− p. Therefore

detMn(Cn, {ai}) = detAdet
(
D −BA−1C

)
(B3)

Our assumption is that |ui − vj | ∼ O(∆t) for ∆t → ∞.
Moreover, at large time the non-interacting Green’s func-
tion decays, as 1/t. Since B and C contain only Green’s
functions with one u and one v, their arguments are of
order ∆t, and the matrix elements decay as O(1/∆t).
Hence the matrix Mn is block-diagonal and

detMn(Cn, {ai}) = detA detD +O(1/∆t2) (B4)

A is in fact a Pp matrix, which leads to∑
a1,...,ap

(−1)
∑p

i=1 ai detA = 0 (B5)

Moreover D does not depend on the first p Keldysh in-
dices, which gives finally∑
a1,...,an

(−1)
∑n

i=1 ai detMn(Cn, {ai}) = O(1/∆t2) (B6)
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We see from this argument that at large separation (for
ui far from t), the terms at fixed Keldysh indices do not
decay, while the sum over the Keldysh indices does. This
is consistent with the observations made in Sect. IV.
This is also necessary for the coefficients Qn to converge
at long time, i.e. for the long time limit and the U -

expansion to commute.

Appendix C: Properties of M [Cn]

An important property of the Mn is found by considering the role of the ”mirror” configurations where the Keldysh

indices {ai} are replaced by {1 − ai}. Let us consider the local density first: ĉ†i (t)ĉi(t). We suppose that the ui are
ordered from the smallest to the largest (if not we relabel them). Then, using Wick theorem, we have

detMn(Cn, {ai}) = i2n+1〈H̃int(u1)aN H̃int(u2)a2 . . . H̃int(un)a1 ĉ†i (t)ĉi(t)H̃int(un)1−aN . . . H̃int(u2)1−a2H̃int(u1)1−a1〉
(C1)

from which we immediately find that

detMn(Cn, {ai}) = −detMn(Cn, {1− ai})∗ (C2)

By adding together a configuration and its mirror, we deduce from the above that

− in+1
∑
{ai}

(−1)
∑

i ai detMn(Cn, {ai}) (C3)

is real and therefore M [Cn] from Eq. (29) is real as well. The same argument holds for the current provided one

replaces ĉ†i (t)ĉi(t) by i[ĉ†i (t)ĉj(t)− ĉ†j(t)ĉi(t)].

Appendix D: Gray code for fast updates of the
determinants

The sum over the Keldysh indices can be accelerated
using a Gray code, see e.g. Ref. 38 section 20.2. Using
a Gray code, it is possible to enumerate all the integers
from 0 to 2N − 1 in such a way that their binary repre-
sentation change only by one bit at each step, and that
the last one contains only one bit (hence is also one bit
flip away from 0). To do this, we start with 0, and for
n = 0, ..2N − 1 we flip the bit at position c where c is
given by:

c ≡

{
ffs(∼ n) iif n < 2N − 1

N iif n = 2N − 1
(D1)

where the ffs(i) returns the position of the first (least
significant) bit set in the integer i, and ∼ n is the binary
complement of the integer n (using the syntax of the C
language). We obtain all integers between 0 and 2N − 1
once and only once. The last case ensures that the integer
returns to 0.

The Keldysh indices at order N are a list of size N
of 0 (upper contour) and 1 (lower contour). They are
therefore in one-to-one correspondence with the integers
from 0 to 2N − 1, via their binary representation. Using
the Gray code, we can enumerate the Keldysh indices
by changing only one bit at a time, which in our algo-
rithm means changing one line and one column in the
determinant at a time. This operation is of complexity
N2, i.e. much quicker than a full recomputation of the

determinant N3, and it is very commonly used in all de-
terminantal Quantum Monte-Carlo. It is implemented
using BLAS 2 operations.

The following piece of C++ code illustrates the use of
the Gray code in our implementation:

auto two_to_N = uint64_t (1) << N;
for (uint64_t n = 0; n < two_to_N; ++n) {
int nlc = (n < two_to_N - 1 ? ffs(~n) : N);
// Change the line and column numbered nlc
// in the matrix

}

where N is the the order at which we compute the de-
terminant, Note that the matrix has returned after the
loop to the value it had before the loop, up to numerical
errors, which are typically controlled at this place.

Appendix E: Extrapolating series beyond their
convergence radius

In this appendix, we use the Lindelöf32 extrapolation
method, for the computation of the charge Q(U) with
α = 0. On Fig. 11, we have seen that for α = 0, the
series can not be summed for U > 0.6 directly. Using the
Lindelöf formula:

Q(U,N, ε) ≡
N∑
n=0

QnU
ne−εn ln(n) (E1)

we plotQ(U,N, ε) for U = 1.5 as a function of ε in Fig. 18.
We see that the extrapolation method produces a result
for Q(U = 1) in very good agreement with the imaginary-
time QMC (dashed line in Fig. 11) result.
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FIG. 18. Extrapolation of the series. Q(U = 1, ε) as a
function of ε for model A with εd = 0, T = 0 and γ = 0.5
for various maximum order N = 4, 5, 6, 7. The circles show
a simple extrapolation from a linear regression in the region
where the various curves overlap. We do recover Q(U = 1) ≈
0.32 well beyond the apparent convergence radius of the series.

Appendix F: Role of bound states in model A

As an illustration of the role of bound states, we briefly
study their role in model A. For this model, they can be
obtained analytically by simple wave matching: One gets

E1 =
1

2γ2 − 1

[
(γ2 − 1)|εd|+ γ2

√
ε2d + 4(2γ2 − 1)

]
(F1)

which exists when |εd| > 2(1 − γ2). The top panel of
Fig. 19 shows the corresponding bound state energy cal-
culated numerically (which matches perfectly the above
expression) as a function of εd. When γ < 1, there is a
finite window of values of εd where there are no bound
states in the system. The bottom panel of Fig. 19 shows
the associated non-interacting lesser Green’s function of
the system as a function of time. In the absence of bound
state (dashed line, γ = 0.5), we see that g<00(t) decays to-
wards zero at large time. Note that this decay would
be much faster a larger temperature. In the presence of
bound states however (full line, γ = 1), we find that at
large time g<00 saturates to its bound state contribution
g<00(t) ∝ e−iE1t. As a results, the convergence of the
terms in the perturbative expansion with the time t will
be much slower and are not even guaranteed to converge
as the bound states do not relax. This is illustrated in
Fig. 20 which shows Q2 (defined in Eq. (28)) versus 1/t
for γ = 1 (upper panel, a bound state is present for any
εd 6= 0) and γ = 0.5 (lower panel, no bound state). Sim-
ilarly, Fig. 21 shows Q2 versus εd with (lower panel) and
without (upper panel) bound state. We find that without
bound state, Q2 quickly converges towards its stationary
value (roughly for t > 10Γ). However, in presence of
bound states the convergence is much slower.
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