48 research outputs found
Down-regulation of a pectin acetylesterase gene modifies strawberry fruit cell wall pectin stracture and increases fruit firmness
Antisense-mediated down-regulation of several fruit-specific genes has previously demonstrated how the cell wall disassembly in strawberry fruit is mediated by a series of enzymes that act sequentially (Posé et al. 2011). An interesting example, the silencing of the polygalacturonase gene FaPG1, was also related with a significant increase of the post-harvest strawberry fruit firmness (Posé et al. 2013). Our research group has isolated a pectin acetylesterase gene, FaPAE1, which expression is enhanced during strawberry ripening. The main goal of this work was to elucidate the role of the degree of acetylation in cell wall integrity and fruit firmness through the antisense-mediated down-regulation of FaPAE1 in strawberry plants. Several transgenics lines were generated and 5 of them produced fruits 5-15% firmer than controls. Cell wall from ripe fruits was isolated from two independent transgenic lines and a control line, and sequentially extracted with different solvents (PAW, H2O, CDTA, Na2CO3). Modifications in fraction yield, its sugar composition and the degree of acetylation in each fraction were determined. Higher amounts of CDTA and Na2CO3 fractions were obtained in transgenic fruits, suggesting a decreased pectin solubilization as results of FaPAE1 silencing. Accordingly, the degree of acetylation of the Na2CO3-soluble pectins was greater in the transgenic lines than the control, but the opposite result was found in pectins from the CDTA fraction. These results suggest that PAE is preferentially active in pectis that are tightly bound to the cellulose-hemicellulose network and its activity could reduce the complexity of the cell wall structure, allowing that other hydrolytic enzymes could access the pectin chains. Thus, the increased fruit firmness observed in the transgenic FaPAE1 lines could be attributed to the direct effect of the silencing of the PAE enzyme and also to the indirect effect that the increase of the degree of acetylation of pectins has on the activity of other enzymes involved in the cell wall degradation.
* Posé et al. (2011). Genes, Genomes and Genomics, 5 (Special Issue 1):40-48
* Posé et al. (2013). Plant Physiology, 150: 1022-1032
We acknowledge support from the Spanish Ministry of Economy and competitivity and Feder EU Funds (grant reference AGL2011-24814), FPI fellowships support for SP (BES-2006-13626) and CP (BES-2009027985), and grant "RamĂłn y Cajal" support for AJMA (RYC-2011-08839).Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tech
Rhamnogalacturonase lyase gene downregulation in strawberry and its potential on mechanical fruit properties
Strawberry softening is one of the main factors that reduces fruit quality and leads to economically important losses. Textural changes during fruit ripening are mainly due to the dissolution of middle lamellae, a reduction in cell-to-cell adhesion and the weakening of parenchyma cell walls as a result of the action of cell wall modifying enzymes. Functional studies of genes encoding pectinase enzymes (polygalacturonase, pectate lyase and -galactosidase) support a key role of pectin disassembly in strawberry softening. Evidence that RG-I may play an important role in strawberry texture has been obtained from the transient silencing of a RG-lyase gene. Pectins are major components of fruit cell walls and highly dynamic polysaccharides, but due to their heterogeneity the precise relation between the structures and functions is incomplete. In this work, stable transgenic strawberry lines with a rhamnogalacturonate lyase gene (FaRGLyase1) down-regulated have been analyzed. Several transgenic lines showing more than 95% silencing of FaRGLyase1 displayed fruit firmness values higher than control. Cell walls from these lines were extracted and analyzed by ELISA and Epitope Detection Chromatography (EDC). This last technique is based on the detection of specific cell wall oligosaccharide epitopes and provides information on sub-populations of pectins containing homogalacturonan and RG-I domains, but also reveals potential links with other cell wall polysaccharides such as xyloglucan. The results obtained indicate that the silencing of FaRGLyase1 reduces degradation of RG-I backbones, but also homogalacturonan, in cell walls, especially in pectin fractions covalently bound to the cell wall. These changes contribute to the increased firmness of transgenic fruits.This research was supported by FEDER EU Funds and the Ministerio de EconomĂa y Competitividad of Spain (grant reference AGL2014-55784-C2), a Marie Curie IEF within the 7th European Community Framework Programme (reference: PIEF-2013-625270) for SP and a FPI fellowship (BES-2015-073616) to support PR-V. Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tech
Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits,
Este estudio examina el impacto de la reducciĂłn del gen FaPG1 en fresas, que se ha relacionado con la disminuciĂłn del reblandecimiento de la fruta y la prolongaciĂłn de la vida Ăștil postcosecha. Se encontrĂł que las fresas transgĂ©nicas con un 90% menos de expresiĂłn de FaPG1 mostraron un 42% menos de solubilizaciĂłn de pectinas y una menor despolimerizaciĂłn en comparaciĂłn con las fresas de control. Las frutas transgĂ©nicas tambiĂ©n mostraron una mayor adhesiĂłn celular y una mejor integridad del tejido. El anĂĄlisis inmunohistoquĂmico indicĂł una mayor presencia de pectinas de bajo contenido de metilo en las fresas transgĂ©nicas. Los resultados sugieren que la firmeza incrementada en las fresas transgĂ©nicas se debe a la reducciĂłn en la solubilizaciĂłn y despolimerizaciĂłn de pectinas, lo que ayuda a mantener la integridad del tejido y resulta en frutos mĂĄs firmes
Isolation and transfection of strawverry protoplasts for gene editing
Strawberry is the most economically important soft fruit. The improvement of the organoleptic qualities of ripe fruit and the postharvest shelf life are main objectives of strawberry breeding programs. Fruit softening is mainly due to the disassembly of cell walls and the dissolution of middle lamella. In strawberry, functional analyses of genes encoding polygalacturonases (PGs) indicate that these enzymes play a key role in fruit softening, i.e. the antisense downregulation of PG genes FaPG1 or FaPG2 increased fruit firmness and postharvest shelf life (Paniagua et al., 2020). These results suggest that PG encoding genes are excellent targets for gene editing to improve strawberry fruit quality. Transfection of protoplasts with CRISPR/Cas9 ribonucleoprotein complexes is currently being explored in many species to produce DNA-free edited plants. In this research, a protocol for strawberry protoplasts transfection has been optimized with the final goal of producing non-transgenic strawberry plants with the FaPG1 gene edited. Protoplasts were isolated from 9 weeks old in vitro grown plants of Fragaria x ananassa, cv. âChandlerâ, micropropagated in Murashige and Skoog (MS) medium supplemented with 2 mg/L of BA. Protoplast extraction and purification was performed as described by BarcelĂł et al. (2019). Using this protocol, a yield of 1 x 105 protoplast/g fresh tissue was obtained and nearly 50-70% of them were viable. Protoplasts were transfected with the plasmid pHBT-sGFP(S65T)-NOS using a PEG-mediated transformation system, as reported by Yoo et al. (2007). To improve the efficiency of protoplast transfection, different variables were evaluated: PEG concentration, time of incubation on PEG and DNA concentration. At 48 h after transfection, the highest percentage of protoplasts showing GFP expression, 18%, was obtained with 15 minutes incubation in 20% of PEG and 5 ”g of DNA
The Intragenesis and Synthetic Biology Approach towards Accelerating Genetic Gains on Strawberry: Development of New Tools to Improve Fruit Quality and Resistance to Pathogens
Under climate change, the spread of pests and pathogens into new environments has a dramatic effect on crop protection control. Strawberry (Fragaria spp.) is one the most profitable crops of the Rosaceae family worldwide, but more than 50 different genera of pathogens affect this species. Therefore, accelerating the improvement of fruit quality and pathogen resistance in strawberry represents an important objective for breeding and reducing the usage of pesticides. New genome sequencing data and bioinformatics tools has provided important resources to expand the use of synthetic biology-assisted intragenesis strategies as a powerful tool to accelerate genetic gains in strawberry. In this paper, we took advantage of these innovative approaches to create four RNAi intragenic silencing cassettes by combining specific strawberry new promoters and pathogen defense-related candidate DNA sequences to increase strawberry fruit quality and resistance by silencing their corresponding endogenous genes, mainly during fruit ripening stages, thus avoiding any unwanted effect on plant growth and development. Using a fruit transient assay, GUS expression was detected by the two synthetic FvAAT2 and FvDOF2 promoters, both by histochemical assay and qPCR analysis of GUS transcript levels, thus ensuring the ability of the same to drive the expression of the silencing cassettes in this strawberry tissue. The approaches described here represent valuable new tools for the rapid development of improved strawberry lines
Evaluation of the effect of drought stress on fruit quality of transgenic strawberry plants with cell wall encoding genes down-regulated.
Strawberry is an important crop in our country. One of the main challenges of this crop
is to produce high-quality fruits with a prolonged post-harvest shelf life. Strawberries are particularly susceptible to water stress so climate change will pose a significant challenge for quality fruits production. This study aimed to characterize, under water restriction conditions, the performance of several transgenic lines of strawberry (Fragaria Ă ananassa, Duch.) with genes encoding cell wall enzymes involved in fruit softening down-regulated. The lines used were: PG29 and 18A13, modified in the polygalacturonase gene FaPG1; ÎČGal28, with the ÎČ-galactosidase gene FaÎČGal4 silenced; RGli26, with the ramnogalacturonan lyase gene FaRGLyase1 silenced. All these lines produced ripe fruits significantly firmer than the control. The plants were grown in a greenhouse under sufficient (3.3 L·m-2·dia-1) or deficient (0.5 L·m-2 ·dia-1) irrigation conditions. The vegetative growth of the plants under stress conditions decreased significantly in the same proportion in all lines tested. Likewise, a similar reduction in fruit weight and size was observed in all genotypes tested, as well as in the number of fruits produced per plant. In terms of fruit quality, all transgenic lines produced firmer fruits than the control under sufficient water conditions. In the water stress treatment, the two lines with the modified FaPG1 gene produced fruits firmer than the control. However, the RGli26 and ÎČGal28 lines showed a decrease in fruit firmness, obtaining values similar to the non-transformed control. No significant variations in colour and soluble solids were detected in any of the analysed lines. These results indicate that FaPG1 gene manipulation is a viable alternative to increase the postharvest shelf life of strawberry plants cultivated under water restriction; nevertheless, the increase in firmness obtained by ÎČ-galactosidase or RGlyase silencing is reversed under water stressThis publication is part of the project PID2020-118468RB-C21, funded by MCIN/AEI/0.13039/501100011033/ and 'FEDER A way to make Europe'.
Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tech
Downregulation of NAC transcription factors modifies cell wall composition and increases strawberry fruit firmness
The strawberry is a soft fruit with a very short post-harvest shelf life. The changes in texture during fruit ripening are mainly due to the dissolution of the middle lamellae, reducing cell-to-cell adhesion, and the weakening of parenchymal cell walls as result of the action of cell wall modifying enzymes. At present, no master regulator of this process has been discovered yet. NAC transcription factors have been involved in numerous physiological processes, including fruit ripening. In strawberry, the NAC family comprises more than 110 genes, and at least 6 of them are expressed during fruit development. In this research, we performed a functional analysis of two ripening-related NAC genes, FaNAC2 and FaNAC3, in Fragaria x ananassa Duch. cv. Chandler. Several RNAi transgenic lines showing low FaNAC2 or FaNAC3 mRNA levels in fruit were obtained through Agrobacterium-mediated transformation. These lines produced fruits significantly firmer than control at the ripe stage, being the increase in firmness higher in FaNAC2 silenced plants. Cell walls were extracted from ripe transgenic fruits and characterized by ELISA and Epitope Detection Chromatography (EDC), using monoclonal antibodies against different polysaccharide epitopes. FaNAC2 transgenic lines showed more extensive changes than FaNAC3; these modifications involved increased amounts of demethylated pectins (LM19) in water and CDTA fractions and an alteration of the lateral branches of RG-I, decreasing the amount of arabinan epitopes and increasing galactan epitopes detected by LM6 and LM5, respectively. The amount of arabinogalactan proteins recognized by the JIM13 antibody was also affected, decreasing in the Na2CO3 fraction and increasing in the 4M KOH and cellulase fraction of the transgenic lines.The results obtained indicate that NAC genes could be involved in the regulation of cell wall disassembly associated to strawberry fruit softening.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tech
Cell wall disassembly is delayed by rhamnogalacturonate lyase gene silencing: potential role in fruit firmness
Strawberry fruits greatly reduce their quality due to softening during ripening with economically important losses. Texture changes of fleshy fruits during ripening are mainly due to middle lamellae dissolution, cell-to-cell adhesion losses and wall weakening of parenchyma cells by the coordinated action of several cell wall enzymes. Pectin degradation has been proven a key factor in strawberry softening by functional analysis of several pectinase genes (polygalacturonase, pectate lyase and -galactosidase). The complexity and highly dynamic nature of pectins remains a challenge to fully elucidate structure-function relationships of pectins. In this work, we present the functional analysis of two independent strawberry transgenic lines with more than 95% silencing of a rhamnogalacturonate lyase gene (FaRGLyase1). Firmness of ripe fruit was significantly higher in both transgenic lines than in the control. Cell walls from these fruits were extracted and analyzed by glycan microarray profiling. This highâthroughput technique allows a wide screening of cell-wall glycan occurrence based on the detection of specific cell wall oligosaccharide epitopes by monoclonal antibodies and reveals profiles which can be used as potential fingerprints specific for a singular organ and/or developmental stage. Our microarray results showed that the silencing of FaRGLyase1 reduced degradation of several rhamnogalacturonan-I related epitopes, as expected. Additionally, comparison of transgenic cell walls from ripe fruits with those extracted from control fruits at different developmental stages (green, white and red) by hierarchical clustering, demonstrated a higher similarity of transgenic fruit cell walls with the control cell walls from fruits at the white stage. Glycan microarray profiles revealed less degraded fruit cell walls as result of FaRGLyase1 down-regulation which could contribute to the increased firmness of transgenic fruitsUniversidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tech
Efecto del silenciamiento de genes que codifican poligalacturonasas sobre el reblandecimiento del fruto de fresa asociado a la maduraciĂłn
La degradaciĂłn de las pectinas de la pared celular mediada por poligalacturonasas juega un papel clave en el reblandecimiento de la fresa. AsĂ, el silenciamiento del gen FaPG1 incrementa la firmeza del fruto maduro y alarga su vida postcosecha. AdemĂĄs de FaPG1, en fresa se ha descrito otro gen que codifica una poligalacturonasa especĂfica de maduraciĂłn, FaPG2. Con el fin de profundizar en el papel de estos genes, se han obtenido plantas transgĂ©nicas con el gen FaPG2 silenciado (lĂneas BPG), asĂ como plantas con FaPG1 y FaPG2 silenciados (lĂneas ABPG), obtenidas mediante retransformaciĂłn de una lĂnea antiFaPG1 (APG29) que mostraba un fuerte silenciamiento del gen y un incremento en la firmeza de fruto. Se obtuvieron 24 lĂneas BPG y 15 ABPG. Estas plantas, junto con la lĂnea APG29 y controles sin transformar, fueron analizadas durante 3 años consecutivos. El 50% de las lĂneas BPG mostraron mayor firmeza de fruto rojo que el control sin transformar, aunque el incremento en firmeza fue similar al obtenido en la lĂnea APG29. Todas las lĂneas dobles transformantes dieron frutos de mayor firmeza que el control, siendo los valores ligeramente superiores a los de la lĂnea APG29 en alguna de ellas. A nivel de expresiĂłn, las lĂneas BPG seleccionadas mostraron un silenciamiento del gen FaPG2 que variĂł entre el 60-70%, e inesperadamente, un silenciamiento significativo de FaPG1, a pesar de la baja homologĂa entre ambos genes. El silenciamiento de FaPG1 en las lĂneas ABPG fue superior al 95%; sin embargo, el silenciamiento de FaPG2 fue similar al obtenido en las plantas BPG. Estos resultados confirman el papel clave de las poligalacturonasas en el reblandecimiento de la fresa y sugieren la existencia de una regulaciĂłn compleja en la expresiĂłn de ambos genes.
Este trabajo ha sido financiado por el proyecto AGL2011-24814 y Fondos FEDERUniversidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tech
Generation and analysis of ESTs from strawberry (Fragaria xananassa) fruits and evaluation of their utility in genetic and molecular studies
<p>Abstract</p> <p>Background</p> <p>Cultivated strawberry is a hybrid octoploid species (<it>Fragaria xananassa </it>Duchesne ex. Rozier) whose fruit is highly appreciated due to its organoleptic properties and health benefits. Despite recent studies on the control of its growth and ripening processes, information about the role played by different hormones on these processes remains elusive. Further advancement of this knowledge is hampered by the limited sequence information on genes from this species, despite the abundant information available on genes from the wild diploid relative <it>Fragaria vesca</it>. However, the diploid species, or one ancestor, only partially contributes to the genome of the cultivated octoploid. We have produced a collection of expressed sequence tags (ESTs) from different cDNA libraries prepared from different fruit parts and developmental stages. The collection has been analysed and the sequence information used to explore the involvement of different hormones in fruit developmental processes, and for the comparison of transcripts in the receptacle of ripe fruits of diploid and octoploid species. The study is particularly important since the commercial fruit is indeed an enlarged flower receptacle with the true fruits, the achenes, on the surface and connected through a network of vascular vessels to the central pith.</p> <p>Results</p> <p>We have sequenced over 4,500 ESTs from <it>Fragaria xananassa</it>, thus doubling the number of ESTs available in the GenBank of this species. We then assembled this information together with that available from <it>F. xananassa </it>resulting a total of 7,096 unigenes. The identification of SSRs and SNPs in many of the ESTs allowed their conversion into functional molecular markers. The availability of libraries prepared from green growing fruits has allowed the cloning of cDNAs encoding for genes of auxin, ethylene and brassinosteroid signalling processes, followed by expression studies in selected fruit parts and developmental stages. In addition, the sequence information generated in the project, jointly with previous information on sequences from both <it>F. xananassa </it>and <it>F. vesca</it>, has allowed designing an oligo-based microarray that has been used to compare the transcriptome of the ripe receptacle of the diploid and octoploid species. Comparison of the transcriptomes, grouping the genes by biological processes, points to differences being quantitative rather than qualitative.</p> <p>Conclusions</p> <p>The present study generates essential knowledge and molecular tools that will be useful in improving investigations at the molecular level in cultivated strawberry (<it>F. xananassa</it>). This knowledge is likely to provide useful resources in the ongoing breeding programs. The sequence information has already allowed the development of molecular markers that have been applied to germplasm characterization and could be eventually used in QTL analysis. Massive transcription analysis can be of utility to target specific genes to be further studied, by their involvement in the different plant developmental processes.</p