3,854 research outputs found
Ionization Mechanisms in Jet-Dominated Seyferts: A Detailed Case Study
For the past 10 years there has been an active debate over whether fast
shocks play an important role in ionizing emission line regions in Seyfert
galaxies. To investigate this claim, we have studied the Seyfert 2 galaxy Mkn
78, using HST UV/optical images and spectroscopy. Since Mkn 78 provides the
archetypal jet-driven bipolar velocity field, if shocks are important anywhere
they should be important in this object. Having mapped the emission line fluxes
and velocity field, we first compare the ionization conditions to standard
photoionization and shock models. We find coherent variations of ionization
consistent with photoionization model sequences which combine optically thick
and thin gas, but are inconsistent with either autoionizing shock models or
photoionization models of just optically thick gas. Furthermore, we find
absolutely no link between the ionization of the gas and its kinematic state,
while we do find a simple decline of ionization degree with radius. We feel
this object provides the strongest case to date against the importance of shock
related ionization in Seyferts.Comment: 4 pages, 1 figure, to appear in the proceedings of IAU Symposium 222
"The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", T.
Storchi Bergmann, L.C. Ho & H.R. Schmitt, ed
The Nuclear Outflow in NGC 2110
We present a HST/STIS spectroscopic and optical/radio imaging study of the
Seyfert NGC 2110 aiming to measure the dynamics and understand the nature of
the nuclear outflow in the galaxy. Previous HST studies have revealed the
presence of a linear structure in the Narrow-Line Region (NLR) aligned with the
radio jet. We show that this structure is strongly accelerated, probably by the
jet, but is unlikely to be entrained in the jet flow. The ionisation properties
of this structure are consistent with photoionisation of dusty, dense gas by
the active nucleus. We present a plausible geometrical model for the NLR,
bringing together various components of the nuclear environment of the galaxy.
We highlight the importance of the circum-nuclear disc in determining the
appearance of the emission line gas and the morphology of the jet. From the
dynamics of the emission line gas, we place constraints on the accelerating
mechanism of the outflow and discuss the relative importance of radio source
synchrotron pressure, radio jet ram pressure and nuclear radiation pressure in
accelerating the gas. While all three mechanisms can account for the energetics
of the emission line gas, gravitational arguments support radio jet ram
pressure as the most likely source of the outflow.Comment: 15 pages, 7 figures; accepted to MNRA
Cosmic downsizing of powerful radio galaxies to low radio luminosities
At bright radio powers ( W/Hz) the space density
of the most powerful sources peaks at higher redshift than that of their weaker
counterparts. This paper establishes whether this luminosity-dependent
evolution persists for sources an order of magnitude fainter than those
previously studied, by measuring the steep--spectrum radio luminosity function
(RLF) across the range W/Hz, out to high
redshift. A grid-based modelling method is used, in which no assumptions are
made about the RLF shape and high-redshift behaviour. The inputs to the model
are the same as in Rigby et al. (2011): redshift distributions from radio
source samples, together with source counts and determinations of the local
luminosity function. However, to improve coverage of the radio power vs.
redshift plane at the lowest radio powers, a new faint radio sample is
introduced. This covers 0.8 sq. deg., in the Subaru/XMM-Newton Deep Field, to a
1.4 GHz flux density limit of Jy, with 99%
redshift completeness. The modelling results show that the previously seen
high-redshift declines in space density persist to
W/Hz. At W/Hz the redshift of the peak space
density increases with luminosity, whilst at lower radio luminosities the
position of the peak remains constant within the uncertainties. This `cosmic
downsizing' behaviour is found to be similar to that seen at optical
wavelengths for quasars, and is interpreted as representing the transition from
radiatively efficient to inefficient accretion modes in the steep-spectrum
population. This conclusion is supported by constructing simple models for the
space density evolution of these two different radio galaxy classes; these are
able to successfully reproduce the observed variation in peak redshift.Comment: 7 pages, 6 figures; accepted for publication in Astronomy &
Astrophysic
Double-Peaked Narrow-Line Active Galactic Nuclei. II. The Case Of Equal Peaks
Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the "equal-peaked" objects (EPAGNs) have [Ne V]/[O III] ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H beta ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.University Cooperative Society of the University of Texas at AustinJane and Roland Blumberg Cenntenial Professorship in AstronomyAlfred P. Sloan FoundationNational Aeronautics and Space AdministrationNational Science FoundationU.S. Department of EnergyJapanese MonbukagakushoMax Planck SocietyUniversity of ChicagoInstitute for Advanced StudyJapan Participation GroupJohns Hopkins UniversityKorean Scientist GroupLos Alamos National LaboratoryMax-Planck-Institute for Astronomy (MPIA)Max-Planck-Institute for Astrophysics (MPA)New Mexico State UniversityUniversity of PittsburghUniversity of PortsmouthPrinceton UniversityUnited States Naval ObservatoryUniversity of WashingtonFermilabAstronom
Recommended from our members
The Jet-Driven Outflow In The Radio Galaxy SDSS J1517+3353: Implications For Double-Peaked Narrow-Line Active Galactic Nucleus
We report on the study of an intriguing active galaxy that was selected as a potential multiple supermassive black hole merger in the early-type host SDSS J151709.20+335324.7 (z = 0.135) from a complete search for double-peaked [O III] lines from the SDSS spectroscopic quasi-stellar object (QSO) database. Ground-based SDSS imaging reveals two blue structures on either side of the photometric center of the host galaxy, separated from each other by about 5.7 kpc. From a combination of SDSS fiber and Keck/HIRES long-slit spectroscopy, it is demonstrated that, in addition to these two features, a third distinct structure surrounds the nucleus of the host galaxy. All three structures exhibit highly ionized line emission with line ratios characteristic of Seyfert II active galactic nuclei. The analysis of spatially resolved emission-line profiles from the HIRES spectrum reveal three distinct kinematic subcomponents, one at rest and the other two moving at -350 km s(-1) and 500 km s(-1) with respect to the systemic velocity of the host galaxy. A comparison of imaging and spectral data confirm a strong association between the kinematic components and the spatial knots, which implies a highly disturbed and complex active region in this object. A comparative analysis of the broadband positions, colors, kinematics, and spectral properties of the knots in this system lead to two plausible explanations: (1) a multiple active galactic nucleus (AGN) produced due to a massive dry merger, or (2) a very powerful radio jet-driven outflow. Subsequent VLA radio imaging reveals a clear jet aligned with the emission-line gas, confirming the latter explanation. We use the broadband radio measurements to examine the impact of the jet on the interstellar medium of the host galaxy, and find that the energy in the radio lobes can heat a significant fraction of the gas to the virial temperature. Finally, we discuss tests that may help future surveys distinguish between jet-driven kinematics and true black-hole binaries. J1517+3353 is a remarkable laboratory for AGN feedback and warrants deeper follow-up study. In the Appendix, we present high-resolution radio imaging of a second AGN with double-peaked [O III] lines, SDSS J112939.78+605742.6, which shows a sub-arcsecond radio jet. If the double-peaked nature of the narrow lines in radio-loud AGNs are generally due to radio jet interactions, we suggest that extended radio structure should be expected in most of such systems.NSF AST-0507483, AST-0808133University of Texas at AustinAlfred P. Sloan FoundationParticipating InstitutionsNational Aeronautics and Space AdministrationU.S. Department of EnergyJapanese MonbukagakushoMax Planck SocietyAstronom
- …