11 research outputs found

    APP-Mediated Signaling Prevents Memory Decline in Alzheimer’s Disease Mouse Model

    No full text
    Summary: Amyloid precursor protein (APP) and its metabolites play key roles in Alzheimer’s disease (AD) pathophysiology. Whereas short amyloid-β (Aβ) peptides derived from APP are pathogenic, the APP holoprotein serves multiple purposes in the nervous system through its cell adhesion and receptor-like properties. Our studies focused on the signaling mediated by the APP cytoplasmic tail. We investigated whether sustained APP signaling during brain development might favor neuronal plasticity and memory process through a direct interaction with the heterotrimeric G-protein subunit GαS (stimulatory G-protein alpha subunit). Our results reveal that APP possesses autonomous regulatory capacity within its intracellular domain that promotes APP cell surface residence, precludes Aβ production, facilitates axodendritic development, and preserves cellular substrates of memory. Altogether, these events contribute to strengthening cognitive functions and are sufficient to modify the course of AD pathology. : Deyts et al. find that APP-mediated signaling, which occurs in lipid-raft microdomains through an interaction between APP C-tail and the heterotrimeric G-protein subunit GαS, provides a positive feedback regulatory loop that promotes non-amyloidogenic APP processing. Continuous GαS/cAMP-dependent signaling through APP C-tail preserves spatial memory in an Alzheimer’s disease mouse model. Keywords: amyloid precursor protein, APP processing, APP C-terminal fragment, Alzheimer disease mouse model, amyloidosis, G-protein signaling, adenylate cyclase, cognitive function, lipid raf

    Microglia-specific targeting by novel capsid-modified AAV6 vectors

    No full text
    Recombinant adeno-associated viruses (rAAV) have been widely used in gene therapy applications for central nervous system diseases. Though rAAV can efficiently target neurons and astrocytes in mouse brains, microglia, the immune cells of the brain, are refractile to rAAV. To identify AAV capsids with microglia-specific transduction properties, we initially screened the most commonly used serotypes, AAV1–9 and rh10, on primary mouse microglia cultures. While these capsids were not permissive, we then tested the microglial targeting properties of a newly characterized set of modified rAAV6 capsid variants with high tropism for monocytes. Indeed, these newly characterized rAAV6 capsid variants, specially a triply mutated Y731F/Y705F/T492V form, carrying a self-complementary genome and microglia-specific promoters (F4/80 or CD68) could efficiently and selectively transduce microglia in vitro. Delivery of these constructs in mice brains resulted in microglia-specific expression of green fluorescent protein, albeit at modest levels. We further show that CD68 promoter–driven expression of the inflammatory cytokine, interleukin-6, using this capsid variant leads to increased astrogliosis in the brains of wild-type mice. Our study describes the first instance of AAV-targeted microglial gene expression leading to functional modulation of the innate immune system in mice brains. This provides the rationale for utilizing these unique capsid/promoter combinations for microglia-specific gene targeting for modeling or functional studies

    Complex Relationships between Substrate Sequence and Sensitivity to Alterations in γ‑Secretase Processivity Induced by γ‑Secretase Modulators

    No full text
    γ-Secretase catalyzes the final cleavage of the amyloid precursor protein (APP), resulting in the production of amyloid-β (Aβ) peptides with different carboxyl termini. Presenilin (<i>PSEN</i>) and amyloid precursor protein (<i>APP</i>) mutations linked to early onset familial Alzheimer’s disease modify the profile of Aβ isoforms generated, by altering both the initial γ-secretase cleavage site and subsequent processivity in a manner that leads to increased levels of the more amyloidogenic Aβ42 and in some circumstances Aβ43. Compounds termed γ-secretase modulators (GSMs) and inverse GSMs (iGSMs) can decrease and increase levels of Aβ42, respectively. As GSMs lower the level of production of pathogenic forms of long Aβ isoforms, they are of great interest as potential Alzheimer’s disease therapeutics. The factors that regulate GSM modulation are not fully understood; however, there is a growing body of evidence that supports the hypothesis that GSM activity is influenced by the amino acid sequence of the γ-secretase substrate. We have evaluated whether mutations near the luminal border of the transmembrane domain (TMD) of APP alter the ability of both acidic, nonsteroidal anti-inflammatory drug-derived carboxylate and nonacidic, phenylimidazole-derived classes of GSMs and iGSMs to modulate γ-secretase cleavage. Our data show that point mutations can dramatically reduce the sensitivity to modulation of cleavage by GSMs but have weaker effects on iGSM activity. These studies support the concept that the effect of GSMs may be substrate selective; for APP, it is dependent on the amino acid sequence of the substrate near the junction of the extracellular domain and luminal segment of the TMD

    IL-10 Alters Immunoproteostasis in APP Mice, Increasing Plaque Burden and Worsening Cognitive Behavior

    Get PDF
    SummaryAnti-inflammatory strategies are proposed to have beneficial effects in Alzheimer’s disease. To explore how anti-inflammatory cytokine signaling affects Aβ pathology, we investigated the effects of adeno-associated virus (AAV2/1)-mediated expression of Interleukin (IL)-10 in the brains of APP transgenic mouse models. IL-10 expression resulted in increased Aβ accumulation and impaired memory in APP mice. A focused transcriptome analysis revealed changes consistent with enhanced IL-10 signaling and increased ApoE expression in IL-10-expressing APP mice. ApoE protein was selectively increased in the plaque-associated insoluble cellular fraction, likely because of direct interaction with aggregated Aβ in the IL-10-expressing APP mice. Ex vivo studies also show that IL-10 and ApoE can individually impair glial Aβ phagocytosis. Our observations that IL-10 has an unexpected negative effect on Aβ proteostasis and cognition in APP mouse models demonstrate the complex interplay between innate immunity and proteostasis in neurodegenerative diseases, an interaction we call immunoproteostasis

    A Human Monoclonal IgG That Binds aβ Assemblies and Diverse Amyloids Exhibits Anti-Amyloid Activities in Vitro and in Vivo.

    Get PDF
    Alzheimer\u27s disease (AD) and familial Danish dementia (FDD) are degenerative neurological diseases characterized by amyloid pathology. Normal human sera contain IgG antibodies that specifically bind diverse preamyloid and amyloid proteins and have shown therapeutic potential in vitro and in vivo. We cloned one of these antibodies, 3H3, from memory B cells of a healthy individual using a hybridoma method. 3H3 is an affinity-matured IgG that binds a pan-amyloid epitope, recognizing both Aβ and λ Ig light chain (LC) amyloids, which are associated with AD and primary amyloidosis, respectively. The pan-amyloid-binding properties of 3H3 were demonstrated using ELISA, immunohistochemical studies, and competition binding assays. Functional studies showed that 3H3 inhibits both Aβ and LC amyloid formation in vitro and abrogates disruption of hippocampal synaptic plasticity by AD-patient-derived soluble Aβ in vivo. A 3H3 single-chain variable fragment (scFv) retained the binding specificity of the 3H3 IgG and, when expressed in the brains of transgenic mice using an adeno-associated virus (AAV) vector, decreased parenchymal Aβ amyloid deposition in TgCRND8 mice and ADan (Danish Amyloid) cerebral amyloid angiopathy in the mouse model of FDD. These data indicate that naturally occurring human IgGs can recognize a conformational, amyloid-specific epitope and have potent anti-amyloid activities, providing a rationale to test their potential as antibody therapeutics for diverse neurological and other amyloid diseases

    TLR5 decoy receptor as a novel anti-amyloid therapeutic for Alzheimer\u27s disease.

    No full text
    There is considerable interest in harnessing innate immunity to treat Alzheimer\u27s disease (AD). Here, we explore whether a decoy receptor strategy using the ectodomain of select TLRs has therapeutic potential in AD. AAV-mediated expression of human TLR5 ectodomain (sTLR5) alone or fused to human IgG4 Fc (sTLR5Fc) results in robust attenuation of amyloid β (Aβ) accumulation in a mouse model of Alzheimer-type Aβ pathology. sTLR5Fc binds to oligomeric and fibrillar Aβ with high affinity, forms complexes with Aβ, and blocks Aβ toxicity. Oligomeric and fibrillar Aβ modulates flagellin-mediated activation of human TLR5 but does not, by itself, activate TLR5 signaling. Genetic analysis shows that rare protein coding variants in human TLR5 may be associated with a reduced risk of AD. Further, transcriptome analysis shows altered TLR gene expression in human AD. Collectively, our data suggest that TLR5 decoy receptor-based biologics represent a novel and safe Aβ-selective class of biotherapy in AD
    corecore