56 research outputs found

    Sinapic Acid Release at the Cell Level by Incorporation into Nanoparticles: Experimental Evidence Using Biomembrane Models

    Get PDF
    Sinapic acid (SA), belonging to the phenylpropanoid family, and its derivatives are secondary metabolites found in the plant kingdom. In recent years, they have drawn attention because of their various biological activities, including neuroprotective effects. In this study, SA was incorporated into two different nanoparticle systems, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). The influence of different concentrations of SA on the nanoparticle systems was evaluated. It was studied the efficacy of the nanoparticle systems to release the active ingredient at cell level through the use of models of biological membranes represented by multilamellar vesicles (MLV) of dimyristoylphosphatidylcholine (DMPC) and conducting kinetic studies by placing in contact SLN and NLC, both unloaded and loaded with two different amounts of SA, with the same biological membrane model. Differential scanning calorimetry (DSC) was used for these studies. The results indicated a different distribution of SA within the two nanoparticle systems and that NLC are able to incorporate and release SA inside the structure of the biological membrane model

    Antibacterial, antioxidant and hypoglycaemic effects of Thymus capitatus (L.) Hoffmanns. et Link leaves' fractions.

    Get PDF
    The aim of this study was to examine the bioactivity of the methanol fraction (MF) and n-hexane fraction (HF) of Thymus capitatus leaves in relation to their constituents analysed by gas chromatography and gas chromatography-mass spectrometry. The effects of T. capitatus on the growth of pathogenic bacteria associated with respiratory diseases (13 gram-positive and 4 gram-negative) were determined using a microdilution method. The MF was particularly effective on Streptococcus pneumoniae and Moraxella catarrhalis. The antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), ferric-reducing antioxidant power and β-carotene bleaching assays. A strong activity using β-carotene bleaching test was observed with the MF (IC50 of 0.7 μg/mL after 30 min of incubation). In the hypoglycaemic test, a selective α-amylase inhibitory activity was detected with the HF begging the most active (IC50 of 422.5 μg/mL). T. capitatus may represent a source of natural bioactive compounds

    Caffeic Acid Phenethyl Ester Regulates PPAR’s Levels in Stem Cells-Derived Adipocytes

    Get PDF
    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration

    Transcriptional modulations induced by proton irradiation in mice skin in function of adsorbed dose and distance

    Get PDF
    Hadron therapy by proton beams represents an advanced anti-cancer strategy due to its highly localized dose deposition allowing a greater sparing of normal tissue and/or organs at risk compared to photon/electron radiotherapy. However, it is not clear to what extent non-targeted effects such as transcriptional modulations produced along the beamline may diffuse and impact the surrounding tissue. In this work, we analyze the transcriptome of proton-irradiated mouse skin and choose two biomarker genes to trace their modulation at different distances from the beam's target and at different doses and times from irradiation to understand to what extent and how far it may propagate, using RNA-Seq and quantitative RT-PCR. In parallel, assessment of lipids alteration is performed by FTIR spectroscopy as a measure of tissue damage. Despite the observed high individual variability of expression, we can show evidence of transcriptional modulation of two biomarker genes at considerable distance from the beam's target where a simulation system predicts a significantly lower adsorbed dose. The results are compatible with a model involving diffusion of transcripts or regulatory molecules from high dose irradiated cells to distant tissue's portions adsorbing a much lower fraction of radiation

    Effect of Ischemia–Reperfusion on Renal Expression and Activity of <i>N</i>  G-<i>N</i>  G-Dimethylarginine Dimethylaminohydrolases

    Get PDF
    Background Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase. It is degraded by the enzyme dimethylarginine dimethylaminohydrolase (DDAH). Methods Rats (n = 50) underwent to 45 min of renal ischemia followed by 30 min, 1 h, and 3 h of reperfusion. Expression of endothelial nitric oxide synthase, inducible nitric oxide synthase, DDAH-1, DDAH-2, renal DDAH activity, plasma NO2(-)/NO3(-), and ADMA levels were evaluated. Results Inducible nitric oxide synthase expression increased, as confirmed by both plasma (11.89 +/- 1.02, 15.56 +/- 0.93, 11.82 +/- 0.86, 35.05 +/- 1.28, and 43.89 +/- 1.63 nmol/ml in the control, ischemic, 30-min, 1-h, and 3-h groups, respectively) and renal (4.81 +/- 0.4, 4.85 +/- 1, 9.42 +/- 0.7, 15.42 +/- 0.85, and 22.03 +/- 1.11 nmol/mg protein) formations of NO2(-)/NO3(-). DDAH-1 expression decreased after reperfusion, whereas DDAH-2 increased after 30 min, returning to basal levels after 3 h. Total DDAH activity was reduced during all times of reperfusion. Both plasma (0.41 +/- 0.03, 0.43 +/- 0.05, 0.62 +/- 0.02, 0.71 +/- 0.02, and 0.41 +/- 0.01 nmol/ml in the control, ischemic, 30-min, 1-h, and 3-h groups, respectively) and renal (1.51 +/- 0.01, 1.5 +/- 0.01, 1.53 +/- 0.01, 2.52 +/- 0.04, and 4.48 +/- 0.03 nmol/mg protein in the control, ischemic, 30-min, 1-h, and 3-h groups, respectively) concentrations of ADMA increased. Conclusions Results suggest that ischemia-reperfusion injury leads to reduced DDAH activity and modification of different DDAH isoform expression, thus leading to increased ADMA levels, which may lead to increased cardiovascular risk

    Plant species of Sub-Family Valerianaceae—A review on its effect on the Central Nervous System

    Get PDF
    Valerianaceae, the sub-family of Caprifoliaceae, contains more than 300 species of annual and perennial herbs, worldwide distributed. Several species are used for their biological properties while some are used as food. Species from the genus Valeriana have been used for their antispasmodic, relaxing, and sedative properties, which have been mainly attributed to the presence of valepotriates, borneol derivatives, and isovalerenic acid. Among this genus, the most common and employed species is Valerianaofficinalis. Although valerian has been traditionally used as a mild sedative, research results are still controversial regarding the role of the different active compounds, the herbal preparations, and the dosage used. The present review is designed to summarize and critically describe the current knowledge on the different plant species belonging to Valerianaceae, their phytochemicals, their uses in the treatment of different diseases with particular emphasis on the effects on the central nervous system. The available information on this sub-family was collected from scientific databases up until year 2020. The following electronic databases were used: PubMed, Scopus, Sci Finder, Web of Science, Science Direct, NCBI, and Google Scholar. The search terms used for this review included Valerianaceae, Valeriana, Centranthus, Fedia, Patrinia, Nardostachys, Plectritis, and Valerianella, phytochemical composition, in vivo studies, Central Nervous System, neuroprotective, antidepressant, antinociceptive, anxiolytic, anxiety, preclinical and clinical studies.UIDB/05183/2020, DL 57/2016/CP1361/CT0022, UIDB/00313/2020info:eu-repo/semantics/publishedVersio

    Molecular Investigation on a Triple Negative Breast Cancer Xenograft Model Exposed to Proton Beams

    Get PDF
    Specific breast cancer (BC) subtypes are associated with bad prognoses due to the absence of successful treatment plans. The triple-negative breast cancer (TNBC) subtype, with estrogen (ER), progesterone (PR) and human epidermal growth factor-2 (HER2) negative receptor status, is a clinical challenge for oncologists, because of its aggressiveness and the absence of effective therapies. In addition, proton therapy (PT) represents an effective treatment against both inaccessible area located or conventional radiotherapy (RT)-resistant cancers, becoming a promising therapeutic choice for TNBC. Our study aimed to analyze the in vivo molecular response to PT and its efficacy in a MDA-MB-231 TNBC xenograft model. TNBC xenograft models were irradiated with 2, 6 and 9 Gy of PT. Gene expression profile (GEP) analyses and immunohistochemical assay (IHC) were performed to highlight specific pathways and key molecules involved in cell response to the radiation. GEP analysis revealed in depth the molecular response to PT, showing a considerable immune response, cell cycle and stem cell process regulation. Only the dose of 9 Gy shifted the balance toward pro-death signaling as a dose escalation which can be easily performed using proton beams, which permit targeting tumors while avoiding damage to the surrounding healthy tissue

    From Data to Software to Science with the Rubin Observatory LSST

    Full text link
    The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) dataset will dramatically alter our understanding of the Universe, from the origins of the Solar System to the nature of dark matter and dark energy. Much of this research will depend on the existence of robust, tested, and scalable algorithms, software, and services. Identifying and developing such tools ahead of time has the potential to significantly accelerate the delivery of early science from LSST. Developing these collaboratively, and making them broadly available, can enable more inclusive and equitable collaboration on LSST science. To facilitate such opportunities, a community workshop entitled "From Data to Software to Science with the Rubin Observatory LSST" was organized by the LSST Interdisciplinary Network for Collaboration and Computing (LINCC) and partners, and held at the Flatiron Institute in New York, March 28-30th 2022. The workshop included over 50 in-person attendees invited from over 300 applications. It identified seven key software areas of need: (i) scalable cross-matching and distributed joining of catalogs, (ii) robust photometric redshift determination, (iii) software for determination of selection functions, (iv) frameworks for scalable time-series analyses, (v) services for image access and reprocessing at scale, (vi) object image access (cutouts) and analysis at scale, and (vii) scalable job execution systems. This white paper summarizes the discussions of this workshop. It considers the motivating science use cases, identified cross-cutting algorithms, software, and services, their high-level technical specifications, and the principles of inclusive collaborations needed to develop them. We provide it as a useful roadmap of needs, as well as to spur action and collaboration between groups and individuals looking to develop reusable software for early LSST science.Comment: White paper from "From Data to Software to Science with the Rubin Observatory LSST" worksho

    From Data to Software to Science with the Rubin Observatory LSST

    Full text link
    editorial reviewedThe Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) dataset will dramatically alter our understanding of the Universe, from the origins of the Solar System to the nature of dark matter and dark energy. Much of this research will depend on the existence of robust, tested, and scalable algorithms, software, and services. Identifying and developing such tools ahead of time has the potential to significantly accelerate the delivery of early science from LSST. Developing these collaboratively, and making them broadly available, can enable more inclusive and equitable collaboration on LSST science. To facilitate such opportunities, a community workshop entitled "From Data to Software to Science with the Rubin Observatory LSST" was organized by the LSST Interdisciplinary Network for Collaboration and Computing (LINCC) and partners, and held at the Flatiron Institute in New York, March 28-30th 2022. The workshop included over 50 in-person attendees invited from over 300 applications. It identified seven key software areas of need: (i) scalable cross-matching and distributed joining of catalogs, (ii) robust photometric redshift determination, (iii) software for determination of selection functions, (iv) frameworks for scalable time-series analyses, (v) services for image access and reprocessing at scale, (vi) object image access (cutouts) and analysis at scale, and (vii) scalable job execution systems. This white paper summarizes the discussions of this workshop. It considers the motivating science use cases, identified cross-cutting algorithms, software, and services, their high-level technical specifications, and the principles of inclusive collaborations needed to develop them. We provide it as a useful roadmap of needs, as well as to spur action and collaboration between groups and individuals looking to develop reusable software for early LSST science

    Antioxidant Activity of Extracts of Momordica Foetida Schumach. et Thonn.

    No full text
    Momordica foetida Schumach. et Thonn. (Cucurbitaceae) is a perennial climbing herb with tendrils, found in swampy areas in Central Uganda. Antidiabetic and antilipogenic activities were reported for some Momordica species, however the mechanism of action is still unknown. Oxidative stress may represent an important pathogenic mechanism in obesity-associated metabolic syndrome. The present study evaluated free radical scavenging capacity of different concentrations of aqueous, methanolic and dichloromethane leaf extracts of Momordica foetida Schumach. et Thonn. and the ability of these extracts to inhibit in vitro plasma lipid peroxidation; in addition, healthy human adipose mesenchymal stem cell cultures were used in order to test the hypothesis that these extracts may affect adipocyte differentiation. Results obtained in this study suggested that aqueous extract might be useful in preventing metabolic syndrome
    corecore