1,647 research outputs found

    Coexisting orders in the quarter-filled Hubbard chain with elastic deformations

    Full text link
    The electronic properties of the quarter-filled extended Peierls-Holstein-Hubbard model that includes lattice distortions and molecular deformations are investigated theoretically using the bosonization approach. We predict the existence of a wide variety of charge-elastic phases depending of the values of the Peierls and Holstein couplings. We include the effect of the Peierls deformation in the nearest-neighbor repulsion V, that may be present in real materials where Coulomb interactions depend strongly on the distance, and we show that the phase diagram changes substantially for large V when this term is taken into account.Comment: 6 pages, 3 figure

    Diffusion and mixing in gravity-driven dense granular flows

    Full text link
    We study the transport properties of particles draining from a silo using imaging and direct particle tracking. The particle displacements show a universal transition from super-diffusion to normal diffusion, as a function of the distance fallen, independent of the flow speed. In the super-diffusive (but sub-ballistic) regime, which occurs before a particle falls through its diameter, the displacements have fat-tailed and anisotropic distributions. In the diffusive regime, we observe very slow cage breaking and Peclet numbers of order 100, contrary to the only previous microscopic model (based on diffusing voids). Overall, our experiments show that diffusion and mixing are dominated by geometry, consistent with fluctuating contact networks but not thermal collisions, as in normal fluids

    Magnetic-field effects on transport in carbon nanotube junctions

    Full text link
    Here we address a theoretical study on the behaviour of electronic states of heterojunctions and quantum dots based on carbon nanotubes under magnetic fields. Emphasis is put on the analysis of the local density of states, the conductance, and on the characteristic curves of current versus voltage. The heterostructures are modeled by joining zigzag tubes through single pentagon-heptagon pair defects, and described within a simple tight binding calculation. The conductance is calculated using the Landauer formula in the Green functions formalism. The used theoretical approach incorporates the atomic details of the topological defects by performing an energy relaxation via Monte Carlo calculation. The effect of a magnetic field on the conductance gap of the system is investigated and compared to those of isolated constituent tubes. It is found that the conductance gap of the studied CNHs exhibits oscillations as a function of the magnetic flux. However, unlike the pristine tubes case, they are not Aharonov-Bohm periodic oscillations

    Measuring primality in numerical semigroups with embedding dimension three

    Get PDF
    Electronic version of an article published as Journal of Algebra and Its Applications, 15, 1, 2016, 1650007. DOI:10.1142/S0219498816500079 © World Scientific Publishing Company https://www.worldscientific.com/doi/abs/10.1142/S0219498816500079In this paper, we find the ω-value of the generators of any numerical semigroup with embedding dimension three. This allows us to determine all possible orderings of the ω-values of the generators. In addition, we relate the ω-value of the numerical semigroup to its catenary degree.The first and third authors received National Science Foundation support under DMS-1262897. The second author is supported by the projects MTM2010-15595, FQM-343, FQM-5849, NSF-1061366 and FEDER funds

    Velocity profile of granular flows inside silos and hoppers

    Full text link
    We measure the flow of granular materials inside a quasi-two dimensional silo as it drains and compare the data with some existing models. The particles inside the silo are imaged and tracked with unprecedented resolution in both space and time to obtain their velocity and diffusion properties. The data obtained by varying the orifice width and the hopper angle allows us to thoroughly test models of gravity driven flows inside these geometries. All of our measured velocity profiles are smooth and free of the shock-like discontinuities ("rupture zones") predicted by critical state soil mechanics. On the other hand, we find that the simple Kinematic Model accurately captures the mean velocity profile near the orifice, although it fails to describe the rapid transition to plug flow far away from the orifice. The measured diffusion length bb, the only free parameter in the model, is not constant as usually assumed, but increases with both the height above the orifice and the angle of the hopper. We discuss improvements to the model to account for the differences. From our data, we also directly measure the diffusion of the particles and find it to be significantly less than predicted by the Void Model, which provides the classical microscopic derivation of the Kinematic Model in terms of diffusing voids in the packing. However, the experimental data is consistent with the recently proposed Spot Model, based on a simple mechanism for cooperative diffusion. Finally, we discuss the flow rate as a function of the orifice width and hopper angles. We find that the flow rate scales with the orifice size to the power of 1.5, consistent with dimensional analysis. Interestingly, the flow rate increases when the funnel angle is increased.Comment: 17 pages, 8 figure

    MUSE Reveals a Recent Merger in the Post-starburst Host Galaxy of the TDE ASASSN-14li

    Full text link
    We present MUSE integral field spectroscopic observations of the host galaxy (PGC 043234) of one of the closest (z=0.0206z=0.0206, D≃90D\simeq 90 Mpc) and best-studied tidal disruption events (TDE), ASASSN-14li. The MUSE integral field data reveal asymmetric and filamentary structures that extend up to ≳10\gtrsim 10 kpc from the post-starburst host galaxy of ASASSN-14li. The structures are traced only through the strong nebular [O III] λ\lambda5007, [N II] λ\lambda6584, and Hα\alpha emission lines. The total off nuclear [O III] λ\lambda5007 luminosity is luminosity is 4.7×10394.7\times 10^{39} erg s−1^{-1} and the ionized H mass is ∼104(500/ne) M⊙\rm \sim 10^4(500/n_e)\,M_{\odot}. Based on the BPT diagram, the nebular emission can be driven by either AGN photoionization or shock excitation, with AGN photoionization favored given the narrow intrinsic line widths. The emission line ratios and spatial distribution strongly resemble ionization nebulae around fading AGNs such as IC 2497 (Hanny's Voorwerp) and ionization "cones" around Seyfert 2 nuclei. The morphology of the emission line filaments strongly suggest that PGC 043234 is a recent merger, which likely triggered a strong starburst and AGN activity leading to the post-starburst spectral signatures and the extended nebular emission line features we see today. We briefly discuss the implications of these observations in the context of the strongly enhanced TDE rates observed in post-starburst galaxies and their connection to enhanced theoretical TDE rates produced by supermassive black-hole binaries.Comment: Accepted for publication in ApJ
    • …
    corecore