3,686 research outputs found

    Three-sublattice Skyrmion crystal in the antiferromagnetic triangular lattice

    Get PDF
    The frustrated classical antiferromagnetic Heisenberg model with Dzyaloshinskii-Moriya (DM) interactions on the triangular lattice is studied under a magnetic field by means of semiclassical calculations and large-scale Monte Carlo simulations. We show that even a small DM interaction induces the formation of an Antiferromagnetic Skyrmion crystal (AF-SkX) state. Unlike what is observed in ferromagnetic materials, we show that the AF-SkX state consists of three interpenetrating Skyrmion crystals (one by sublattice), and most importantly, the AF-SkX state seems to survive in the limit of zero temperature. To characterize the phase diagram we compute the average of the topological order parameter which can be associated to the number of topological charges or Skyrmions. As the magnetic field increases this parameter presents a clear jump, indicating a discontinuous transition from a spiral phase into the AF-SkX phase, where multiple Bragg peaks coexist in the spin structure factor. For higher fields, a second (probably continuous) transition occurs into a featureless paramagnetic phase.Comment: 8 pages, 8 figure

    Field induced multiple order-by-disorder state selection in antiferromagnetic honeycomb bilayer lattice

    Get PDF
    In this paper we present a detailed study of the antiferromagnetic classical Heisenberg model on a bilayer honeycomb lattice in a highly frustrated regime in presence of a magnetic field. This study shows strong evidence of entropic order-by-disorder selection in different sectors of the magnetization curve. For antiferromagnetic couplings J1=Jx=Jp/3J_1=J_x=J_p/3, we find that at low temperatures there are two different regions in the magnetization curve selected by this mechanism with different number of soft and zero modes. These regions present broken Z2Z_2 symmetry and are separated by a not fully collinear classical plateau at M=1/2M=1/2. At higher temperatures, there is a crossover from the conventional paramagnet to a cooperative magnet. Finally, we also discuss the low temperature behavior of the system for a less frustrated region, J1=Jx<Jp/3J_1=J_x<J_p/3.Comment: revised version - accepted for publication in Physical Review B - 12 pages, 11 figure

    Metastable and scaling regimes of a one-dimensional Kawasaki dynamics

    Get PDF
    We investigate the large-time scaling regimes arising from a variety of metastable structures in a chain of Ising spins with both first- and second-neighbor couplings while subject to a Kawasaki dynamics. Depending on the ratio and sign of these former, different dynamic exponents are suggested by finite-size scaling analyses of relaxation times. At low but nonzero-temperatures these are calculated via exact diagonalizations of the evolution operator in finite chains under several activation barriers. In the absence of metastability the dynamics is always diffusive.Comment: 18 pages, 8 figures. Brief additions. To appear in Phys. Rev.

    Critical fluctuations in an optical parametric oscillator: when light behaves like magnetism

    Full text link
    We study the nondegenerate optical parametric oscillator in a planar interferometer near threshold, where critical phenomena are expected. These phenomena are associated with nonequilibrium quantum dynamics that are known to lead to quadrature entanglement and squeezing in the oscillator field modes. We obtain a universal form for the equation describing this system, which allows a comparison with other phase transitions. We find that the unsqueezed quadratures of this system correspond to a two-dimensional XY-type model with a tricritical Lifshitz point. This leaves open the possibility of a controlled experimental investigation into this unusual class of statistical models. We evaluate the correlations of the unsqueezed quadrature using both an exact numerical simulation and a Gaussian approximation, and obtain an accurate numerical calculation of the non-Gaussian correlations.Comment: Title changed. New figures adde

    Probabilistic quantum phase-space simulation of Bell violations and their dynamical evolution

    Full text link
    Quantum simulations of Bell inequality violations are numerically obtained using probabilistic phase space methods, namely the positive P-representation. In this approach the moments of quantum observables are evaluated as moments of variables that have values outside the normal eigenvalue range. There is thus a parallel with quantum weak measurements and weak values. Nevertheless, the representation is exactly equivalent to quantum mechanics. A number of states violating Bell inequalities are sampled, demonstrating that these quantum paradoxes can be treated with probabilistic methods. We treat quantum dynamics by simulating the time evolution of the Bell state formed via parametric down-conversion, and discuss multi-mode generalizations

    Quantum probabilistic sampling of multipartite 60-qubit Bell inequality violations

    Full text link
    We show that violation of genuine multipartite Bell inequalities can be obtained with sampled, probabilistic phase space methods. These genuine Bell violations cannot be replicated if any part of the system is described by a local hidden variable theory. The Bell violations are simulated probabilistically using quantum phase-space representations. We treat mesoscopically large Greenberger-Horne-Zeilinger (GHZ) states having up to 60 qubits, using both a multipartite SU(2) Q-representation and the positive P-representation. Surprisingly, we find that sampling with phase-space distributions can be exponentially faster than experiment. This is due to the classical parallelism inherent in the simulation of quantum measurements using phase-space methods. Our probabilistic sampling method predicts a contradiction with local realism of "Schr\"odinger-cat" states that can be realized as a GHZ spin state, either in ion traps or with photonic qubits. We also present a quantum simulation of the observed super-decoherence of the ion-trap "cat" state, using a phenomenological noise model

    Probabilistic simulation of mesoscopic "Schr\"odinger cat" states

    Full text link
    We carry out probabilistic phase-space sampling of mesoscopic Schr\"odinger cat quantum states, demonstrating multipartite Bell violations for up to 60 qubits. We use states similar to those generated in photonic and ion-trap experiments. These results show that mesoscopic quantum superpositions are directly accessible to probabilistic sampling, and we analyze the properties of sampling errors. We also demonstrate dynamical simulation of super-decoherence in ion traps. Our computer simulations can be either exponentially faster or slower than experiment, depending on the correlations measured
    • …
    corecore