58 research outputs found
NEAR: A New Station to Study Neutron-Induced Reactions of Astrophysical Interest at CERN-n_TOF
We present NEAR, a new experimental area at the CERN-n_TOF facility and a possible setup for cross section measurements of interest to nuclear astrophysics. This was recently realized with the aim of performing spectral-averaged neutron-capture cross section measurements by means of the activation technique. The recently commissioned NEAR station at n_TOF is now ready for the physics program, which includes a preliminary benchmark of the proposed idea. Based on the results obtained by dedicated Monte Carlo simulations and calculation, a suitable filtering of the neutron beam is expected to enable measurements of Maxwellian Averaged Cross Section (MACS) at different temperatures. To validate the feasibility of these studies we plan to start the measurement campaign by irradiating several isotopes whose MACS at different temperatures have recently been or are planned to be determined with high accuracy at n_TOF, as a function of energy in the two time-of-flight measurement stations. For instance, the physical cases of 88Sr(n,Îł
), 89Y(n,Îł
), 94Zr(n,Îł
) and 64Ni(n,Îł
) are discussed. As the neutron capture on 89Y produces a pure β
-decay emitter, we plan to test the possibility to perform activation measurements on such class of isotopes as well. The expected results of these measurements would open the way to challenging measurements of MACS by the activation technique at n_TOF, for rare and/or exotic isotopes of interest for nuclear astrophysic
NEAR at n_TOF/CERN: Preparing the first multi-foil activation measurement
The n_TOF facility at CERN is a neutron Time-Of-Flight facility based on a spallation neutron source. During the Second Long Shutdown (LS2) , a new experimental zone was designed and delivered. This new experimental area -the NEAR station - is located very close to the lead spallation target, at a distance of just ~3m. In this way, the high luminosity of the n_TOF neutron spallation source can be fully exploited. Towards the characterization of the new experimental area as well for the benchmarking of the performed simulations, the multi-foil activation measurement will be implemented. Eleven threshold and seven capture reference reactions will be utilized for the unfolding of the NEAR neutron beam energy spectrum that stretches from the meV to the GeV region
First Results of the Ce(n,Îł)Ce Cross-Section Measurement at n_TOF
An accurate measurement of the Ce(n,Îł) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the Ce Maxwellian-averaged cross-section
First Results of the Ce(n,Îł)Ce Cross-Section Measurement at n_TOF
An accurate measurement of the Ce(n,Îł) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the Ce Maxwellian-averaged cross-section
- …