16 research outputs found

    Electrical transport properties of single-crystal CaB 6, SrB 6, and BaB 6

    Get PDF
    The electrical resistivity and Hall effect of alkaline-earth-metal hexaboride single crystals are measured as a function of temperature, hydrostatic pressure, and magnetic field. The transport properties vary weakly with the external parameters and are modeled in terms of intrinsic variable-valence defects. These defects can stay either in (1) delocalized shallow levels or in (2) localized levels resonant with the conduction band, which can be neutral or negatively charged. Satisfactory agreement is obtained for electronic transport properties in a broad temperature and pressure range, although fitting the magnetoresistance is less straightforward and a combination of various mechanisms is needed to explain the field and temperature dependences

    Quantum Oscillations In Eufe2 As2 Single Crystals

    Get PDF
    Quantum oscillation measurements provide relevant information about the Fermi surface (FS) properties of strongly correlated metals. Here, we report on the Shubnikov-de Haas effect via high-field resistivity measurements of EuFe2As2 (Eu122) and BaFe2As2 (Ba122) single crystals. Although both pnictide compounds are isovalent with similar effective masses and density of states, at the Fermi level, our results reveal subtle changes in their fermiology. Remarkably, although the spin-density-wave (SDW) ordering temperature is higher in the Eu-rich end, Eu122 displays a much more isotropic and three-dimensional-like FS when compared with Ba122, in agreement with band structure calculations. Our experimental results suggest an anisotropic contribution of the Fe 3d orbitals to the FS in Ba122. We speculate that this orbital differentiation may be responsible for the suppression of the SDW phase in the FeAs-based compounds.9019Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H., (2008) J. Am. Chem. Soc., 130, p. 3296. , JACSAT 0002-7863Rotter, M., Tegel, M., Johrendt, D., Schellenberg, I., Hermes, W., Pöttgen, R., (2008) Phys. Rev. B, 78, p. 020503. , (R). PRBMDO 1098-0121Rotter, M., Tegel, M., Johrendt, D., (2008) Phys. Rev. Lett., 101, p. 107006. , PRLTAO 0031-9007Wang, C., Li, L., Chi, S., Zhu, Z., Ren, Z., Li, Y., Wang, Y., Xu, Z., (2008) Europhys. Lett., 83, p. 67006. , EULEEJ 0295-5075Ishida, K., Nakai, Y., Hosono, H., (2009) J. Phys. Soc. Japan, 78, p. 062001. , JUPSAU 0031-9015Johnston, D.C., (2010) Adv. Phys., 59, p. 803. , ADPHAH 0001-8732Paglione, J., Greene, R.L., (2010) Nat. Phys., 6, p. 645. , 1745-2473Canfield, P.C., Bud'Ko, S.L., (2010) Annu. Rev. Cond. Mat. Phys., 1, p. 27. , 1947-5454Wen, H.H., Li, S., (2011) Annu. Rev. Cond. Mat. Phys., 2, p. 121. , 1947-5454Stewart, G.R., (2011) Rev. Mod. Phys., 83, p. 1589. , RMPHAT 0034-6861Urbano, R.R., Green, E.L., Moulton, W.G., Reyes, A.P., Kuhns, P.L., Bittar, E.M., Adriano, C., Pagliuso, P.G., (2010) Phys. Rev. Lett., 105, p. 107001. , PRLTAO 0031-9007Zhou, B., Zhang, Y., Yang, L.-X., Xu, M., He, C., Chen, F., Zhao, J.-F., Feng, D.L., (2010) Phys. Rev. B, 81, p. 155124. , PRBMDO 1098-0121De Jong, S., Van Heumen, E., Thirupathaiah, S., Huisman, R., Massee, F., Goedkoop, J.B., Ovsyannikov, R., Golden, M.S., (2010) Europhys. Lett., 89, p. 27007. , EULEEJ 0295-5075Ding, H., Nakayama, K., Richard, P., Souma, S., Sato, T., Takahashi, T., Neupane, M., Wang, N.L., (2011) J. Phys. Condens. Matt., 23, p. 135701. , JCOMEL 0953-8984Hin, Z.P., Haule, K., Kotliar, G., (2011) Nat. Mater., 10, p. 932. , 1476-1122Thirupathaiah, S., (2011), Ph.D. thesis, Helmholtz-Zentrum Berlin, Albert-Einstein-StrasseSchoenberg, D., (1984) Magnetic Oscillations in Metals, , (Cambridge University Press, Cambridge)Sebastian, S.E., (2012) Magnetism and Superconductivity: From Cuprates to Iron-Pnictides, p. 4. , in (Pan Stanford, Singapore), Chap.Sebastian, S.E., Gillett, J., Harrison, N., Lau, P.H.C., Singh, D.J., Mielke, C.H., Lonzarich, G.G., (2008) J. Phys.: Cond. Matt., 20, p. 422203. , JCOMEL 0953-8984Analytis, J.G., McDonald, R.D., Chu, J.-H., Riggs, S.C., Bangura, A.F., Kucharczyk, C., Johannes, M., Fisher, I.R., (2009) Phys. Rev. B, 80, p. 064507. , PRBMDO 1098-0121Terashima, T., Kurita, N., Tomita, M., Kihou, K., Lee, C.-H., Tomioka, Y., Ito, T., Nakajima, M., (2011) Phys. Rev. Lett., 107, p. 176402. , S. Uji,. PRLTAO 0031-9007Harrison, N., McDonald, R.D., Mielke, C.H., Bauer, E.D., Ronning, F., Thompson, J.D., (2009) J. Phys. Condens. Matter, 21, p. 322202. , JCOMEL 0953-8984Kurita, N., Kimata, M., Kodama, K., Harada, A., Tomita, M., Suzuki, H.S., Matsumoto, T., Terashima, T., (2011) J. Phys.: Conf. Ser., 273, p. 012098. , 1742-6596Jeevan, H.S., Hossain, Z., Kasinathan, D., Rosner, H., Geibel, C., Gegenwart, P., (2008) Phys. Rev. B, 78, p. 052502. , PRBMDO 1098-0121Jiang, S., Luo, Y., Ren, Z., Zhu, Z., Wang, C., Xu, X., Tao, Q., Xu, Z., (2009) New J. Phys., 11, p. 025007. , NJOPFM 1367-2630Garitezi, T.M., Adriano, C., Rosa, P.F.S., Bittar, E.M., Bufaical, L., De Almeida, R.L., Granado, E., Pagliuso, P.G., (2013) Brazilian J. Phys., 43, p. 223. , BJPHE6 0103-9733Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnick, D., Luitz, J., (2001) WIEN2K, , (Karlheinz Schwarz, Techn. Universitat Wien, Vienna, Austria)Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244. , PRBMDO 0163-1829Anisimov, V.I., Zaanen, J., Andersen, O.K., (1991) Phys. Rev. B, 44, p. 943. , PRBMDO 0163-1829Xiao, Y., Su, Y., Meven, M., Mittal, R., Kumar, C.M.N., Chatterji, T., Price, S., Brueckel Th., (2009) Phys. Rev. B, 80, p. 174424. , PRBMDO 1098-0121Huang, Q., Qiu, Y., Bao, W., Green, M.A., Lynn, J.W., Gasparovic, Y.C., Wu, T., Chen, X.H., (2008) Phys. Rev. Lett., 101, p. 257003. , PRLTAO 0031-9007Xiao, Y., (2010) Phys. Rev. B, 81, p. 220406. , (R). PRBMDO 1098-0121Graf, D., Stillwell, R., Murphy, T.P., Park, J.-H., Palm, E.C., Schlottmann, P., McDonald, R.D., Tozer, S.W., (2012) Phys. Rev. B, 85, p. 134503. , PRBMDO 1098-0121Rosa, P.F.S., Adriano, C., Iwamoto, W., Garitezi, T.M., Grant, T., Fisk, Z., Pagliuso, P.G., (2012) Phys. Rev. B, 86, p. 165131. , PRBMDO 1098-0121Rosa, P.F.S., Adriano, C., Garitezi, T.M., Grant, T., Fisk, Z., Urbano, R.R., Pagliuso, P.G., (2014) Sci. Rep., 4, p. 6543. , 2045-2322Granado, E., Mendonça-Ferreira, L., Garcia, F., De M. Azevedo, G., Fabbris, G., Bittar, E.M., Adriano, C., Pagliuso, P.G., (2011) Phys. Rev. B, 83, p. 184508. , PRBMDO 1098-0121Raffius, H., Morsen, E., Mosel, B.D., Muller, W., Warmuth, W., Jeitschko, W., Terbuchte, L., Vomhof, T.J., (1993) J. Phys. Chem. Solids, 54, p. 135. , JPCSAW 0022-369

    Physical properties and magnetic structure of the intermetallic CeCuBi2 compound

    Get PDF
    In this work we combine magnetization, pressure dependent electrical resistivity, heat capacity, Cu63 nuclear magnetic resonance (NMR), and x-ray resonant magnetic scattering experiments to investigate the physical properties of the intermetallic CeCuBi2 compound. Our single crystals show an antiferromagnetic ordering at TN≃16 K and the magnetic properties indicate that this compound is an Ising antiferromagnet. In particular, the low temperature magnetization data revealed a spin-flop transition at T=5 K when magnetic fields of about 5.5 T are applied along the c axis. Moreover, the x-ray magnetic diffraction data below TN revealed a commensurate antiferromagnetic structure with propagation wave vector (0012) with the Ce3+ moments oriented along the c axis. Furthermore, our heat capacity, pressure dependent resistivity, and temperature dependent Cu63 NMR data suggest that CeCuBi2 exhibits a weak heavy fermion behavior with strongly localized Ce3+ 4f electrons. We thus discuss a scenario in which both the anisotropic magnetic interactions between the Ce3+ ions and the tetragonal crystalline electric field effects are taking into account in CeCuBi2.Fil: Adriano, C.. Universidade Estadual de Campinas; BrasilFil: Rosa, P.F.S.. Universidade Estadual de Campinas; Brasil. University of California at Irvine; Estados UnidosFil: Jesus, Camilo B. R.. Universidade Estadual de Campinas; BrasilFil: Mardegan, J. R. L.. Universidade Estadual de Campinas; BrasilFil: Garitezi, T. M.. Universidade Estadual de Campinas; BrasilFil: Grant, Taran. California State University; Estados UnidosFil: Fisk, Z.. California State University; Estados UnidosFil: Garcia, Daniel Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Reyes, A. P.. National High Magnetic Field Laboratory; Estados UnidosFil: Kuhns, P. L.. National High Magnetic Field Laboratory; Estados UnidosFil: Urbano, R. R.. Universidade Estadual de Campinas; BrasilFil: Giles, C.. Universidade Estadual de Campinas; BrasilFil: Pagliuso, P. G.. Universidade Estadual de Campinas; Brasi

    Possible Unconventional Superconductivity In Substituted Bafe 2 As 2 Revealed By Magnetic Pair-breaking Studies

    Get PDF
    The possible existence of a sign-changing gap symmetry in BaFe 2 As 2 -derived superconductors (SC) has been an exciting topic of research in the last few years. To further investigate this subject we combine Electron Spin Resonance (ESR) and pressure-dependent transport measurements to investigate magnetic pair-breaking effects on BaFe 1.9 M 0.1 As 2 (M = Mn, Co, Cu, and Ni) single crystals. An ESR signal, indicative of the presence of localized magnetic moments, is observed only for M = Cu and Mn compounds, which display very low SC transition temperature (T c) and no SC, respectively. From the ESR analysis assuming the absence of bottleneck effects, the microscopic parameters are extracted to show that this reduction of T c cannot be accounted by the Abrikosov-Gorkov pair-breaking expression for a sign-preserving gap function. Our results reveal an unconventional spin- and pressure-dependent pair-breaking effect and impose strong constraints on the pairing symmetry of these materials.4Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H., Iron-based layered superconductor La[O12xFx]FeAs (x 5 0. 05-0. 12) with Tc 5 26 K (2008) J. Am. Chem. Soc., 130, p. 3296Rotter, M., Spin density wave anomaly at 140 K in the ternary iron arsenide BaFe2As2 (2008) Phys. Rev. B, 78, pp. 020503RIshida, K., Nakai, Y., Hosono, H., To what extent iron-pnictide new superconductors have been clarified: A progress report (2009) J. Phys. Soc. Japan, 78, p. 062001Hirschfeld, P.J., Korshunov, M.M., Mazin, I.I., Gap symmetry and structure of Fe-based superconductors (2011) Rep. Prog. Phys., 74, p. 124508Chubukov, A.V., Pairing mechanism in fe-based superconductors (2012) Annu. Rev. Cond. Mat. Phys., 3, p. 57Bittar, E.M., Co-substitution effects on the fe valence in the BaFe2As2 superconducting compound: A study of hard x-ray absorption spectroscopy (2011) Phys. Rev. Lett., 107, p. 267402Granado, E., Pressure and chemical substitution effects in the local atomic structure of BaFe2As2 (2011) Phys. Rev. B, 83, p. 184508Wadati, H., Elfimov, I., Sawatzky, G.A., Where are the extra d electrons in transition-metal-substituted iron pnictides? (2010) Phys. Rev. Lett., 105, p. 157004Ideta, S., Dependence of carrier doping on the impurity potential in transition-metal-substituted feas-based superconductors (2013) Phys. Rev. Lett., 110, p. 107007Berlijn, T., Lin, C.-H., Garber, W., Ku, W., Do transition-metal substitutions dope carriers in iron-based superconductors? (2012) Phys. Rev. Lett., 108, p. 207003Hin, Z.P., Haule, K., Kotliar, G., Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides (2011) Nature Materials, 10, pp. 932a-935aRosa, P.F.S., Evolution of Eu21 spin dynamics in Ba12xEuxFe2As2 (2012) Phys. Rev. B, 86, p. 165131Rosa, P.F.S., (2014) Site Specific Spin Dynamics in BaFe2As2: Tuning the Ground State by Orbital Differentiation, , arxiv:1402. 2001v01Garitezi, T.M., Transport critical current measurements on a Cu-substituted BaFe2As2 superconductor (2014) J. Appl. Phys., 115, pp. 17D704Rosa, P.F.S., Pressure effects on magnetic pair-breaking in Mn- and Eusubstituted BaFe2As2 (2014) J. Appl. Phys., 115, pp. 17D702Thaler, A., Physical and magnetic properties of Ba(Fe12xMnx) 2As2 single crystals (2011) Phys. Rev. B, 84, p. 144528Et Al., A., Pressure effects on the electron-doped high Tc superconductor BaFe22xCoxAs2 (2008) J Phys. Cond. Mat., 20, p. 472201Et Al., D., Pressure versus concentration tuning of the superconductivity in Ba(Fe12xCox) 2As2 (2010) J. Phys. Soc. Japan, 79, p. 124705Yamaichi, S., Katagiri, T., Sasagawa, T., Uniaxial pressure effects on the transport properties in Ba(Fe12xCox) 2As2 single crystals (2013) Physica C, 494, pp. 62-64Canfield, P.C., Budko, S.L., Ni, N., Yan, J.Q., Kracher, A., Decoupling of the superconducting and magnetic/structural phase transitions in electron-doped BaFe2As2 (2009) Phys. Rev. B, 80, pp. 060501RKirshenbaum, K., Saha, S.R., Ziemak, S., Drye, T., Paglione, J., Universal pairbreaking in transition metal-substituted iron-pnictide superconductors (2012) Phys. Rev. B, 86, pp. 140505ROnari, S., Kontani, H., Violation of Andersonaŝ Theorem for the Sign-Reversing s-Wave State of Iron-Pnictide Superconductors (2009) Phys. Rev. Lett., 103, p. 177001Li, J., Superconductivity suppression of Ba0. 5K0. 5Fe222xMn2xAs2 single crystals by substitution of transition metal (M 5 Mn, Ru, Co, Ni, Cu, and Zn) (2012) Phys. Rev. B, 85, p. 214509Bang, Y., Choi, H.-Y., Won, H., Impurity effects on the s6-wave state of the ironbased superconductors (2009) Phys. Rev. B, 79, p. 054529Wang, Y., Kreisel, A., Hirschfeld, P.J., Mishra, V., Using controlled disorder to distinguish s6 and s11 gap structure in Fe-based superconductors (2013) Phys. Rev. B, 87, p. 094504Fernandes, R.M., Vavilov, M.G., Chubukov, A.V., Enhancement of Tc by disorder in underdoped iron pnictide superconductors (2012) Phys. Rev. B, 85, pp. 140512RNi, N., Temperature versus doping phase diagrams for Ba(Fe12xTMx) 2As2 (TM 5 Ni,Cu,Cu/Co) single crystals (2010) Phys. Rev. B, 82, p. 024519Patz, A., Ultrafast observation of critical nematic fluctuations and giant magnetoelastic coupling in iron pnictides (2014) Nature Comm., 5, p. 3229Abrikosov, A.A., Gorkov, L.P., Contribution to the theory of superconducting alloys with paramagnetic impurities (1961) Sov. Phys. JETP, 12, p. 1243Skalski, S., Betbeder-Matibet, O., Weiss, P.R., Properties of superconducting alloys containing paramagnetic impurities (1964) Phys. Rev., 136, pp. A1500-A1518Pagliuso, P.G., Electron spin resonance of Gd31 in the normal state of RNi2B2C (R 5 Y, Lu) (1998) Phys. Rev. B, 57, p. 3668Korringa, J., Nuclear magnetic relaxation and resonance line shift in metals (1950) Physica, 16, p. 601Rettori, C., Dynamic behavior of paramagnetic ions and conduction electrons in intermetallic compounds: GdxLu12xAl2 (1974) Phys. Rev. B, 10, p. 1826Davidov, D., Electron spin resonance of Gd in the intermetallic compounds YCu, YAg, and LaAg:Wave vector dependence of the exchange interaction (1973) Solid State Comm., 12, p. 621Narath, A., Weaver, H.T., Effects of electron-electron interactions on nuclear spin-lattice relaxation rates and knight shifts in alkali and noble metals (1968) Phys. Rev., 175, p. 373Shaw, R.W., Warren, W.W., Enhancement of the korringa constant in alkali metals by electron-electron interactions (1971) Phys. Rev. B, 3, p. 1562Bittar, E.M., Electron spin resonance study of the LaIn32xSnx superconducting system (2011) J. of Phys.: Cond. Matt., 23, p. 455701Maple, M.B., Dependence of s 2 f exchange on atomic number in rare earth dialuminides (1970) Solid State Comm., 8 (22), pp. 1915-1917Garitezi, T.M., Synthesis and characterization of BaFe2As2 single crystals grown by in-flux technique (2013) Brazilian Journal of Physics, 43, p. 223Alireza, P.L., Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures (2009) J. Phys. Condens. Matter, 21, p. 012208Rotter, M., Tegel, M., Johrendt, D., Superconductivity at 38 K in the Iron Arsenide Ba12xKxFe2As2 (2008) Phys. Rev. Lett., 101, p. 107006Wang, C., Thorium-dopingaînduced superconductivity up to 56âK in Gd12xThxFeAsO (2008) EPL, 83, p. 67006Shibata, A., Thorium-dopingaînduced superconductivity up to 56âK in Gd12xThxFeAsO (1986) J. Phys. Soc. Jpn., 55, p. 6Cooley, J.C., Aronson, M.C., Canfield, P.C., High pressures and the Kondo gap in Ce3Bi4Pt3 (1997) Phys. Rev. B, 55, p. 7533Oomi, G., Kagayama, T., Effect of pressure and magnetic field on the electrical resistivity of cerium kondo compounds (1996) J. Phys. Soc. Jpn., 65 (SUPPL. B), pp. 42-48Ramos, S.M., Superconducting quantum critical point in CeCoIn52xSnx (2010) Phys. Rev. Lett., 105, p. 126401Hering, E.N., Pressureâtemperatureâcomposition phase diagram of Ce2MIn8 (2006) Physica B: Cond. Matt., 378Dyson, F.J., Electron spin resonance absorption in metals. Ii. Theory of electron diffusion and the skin effect (1955) Phys. Rev., 98, p. 349Texier, Y., Mn local moments prevent superconductivity in iron pnictides Ba(Fe12xMnx) 2As2 (2012) EPL, 99, p. 17002Leboeuf, D., (2013) NMR Study of Electronic Correlations in Mn-doped Ba(Fe12xCox) 2As2 and BaFe(As12xPx) 2, p. 4969. , arXiv1310Suzuki, H., Absence of superconductivity in the hole-doped Fe pnictide Ba(Fe12xMnx) 2As2: Photoemission and x-ray absorption spectroscopy studies (2013) Phys. Rev. B, 88, pp. 100501RKim, M.G., Effects of transition metal substitutions on the incommensurability and spin fluctuations in BaFe2As2 by elastic and inelastic neutron scattering (2012) Phys. Rev. Lett., 109, p. 167003Et Al., F., Short-range magnetic order and effective suppression of superconductivity by manganese doping in LaFe12xMnxAsO12yFy (2013) Phys. Rev. B, 87, p. 174515Golubov, A.A., Mazin, I.I., Effect of magnetic and nonmagnetic impurities on highly anisotropic superconductivity (1997) Phys. Rev. B, 55, p. 15146Openov, L.A., Combined effect of nonmagnetic and magnetic scatterers on the critical temperatures of superconductors with different anisotropies of the gap (1997) JETP Lett., 66, p. 661Efremov, D.V., Disorder-induced transition between s6 and s11 states in two-band superconductors (2011) Phys. Rev. B, 84, p. 180512Tucker, G.S., Competition between stripe and checkerboard magnetic instabilities in Mn-doped BaFe2As2 (2012) Phys. Rev. B, 86, p. 020503Fernandes, R.M., Millis, A.J., Suppression of Superconductivity by Neel-Type magnetic fluctuations in the iron pnictides (2013) Phys. Rev. Lett., 110, p. 117004Chi, S., (2013) Sign Inversion in the Superconducting Order Parameter of LiFeAs Inferred from Bogoliubov Quasiparticle Interference. ArXiv:1308. 4413v1Johnston, D.C., (2010) Adv. Phys., 59, p. 803Paglione, J., Greene, R.L., Hightemperature superconductivity in iron-based materials (2010) Nature Phys., 6, p. 645Wen, H.H., Li, S., Materials and novel superconductivity in iron pnictide superconductors (2011) Annu. Rev. Cond. Mat. Phys., 2, p. 121Stewart, G.R., Superconductivity in iron compounds (2011) Rev. Mod. Phys., 83, pp. 1589-165

    Transport Critical Current Measurements On A Cu-substituted Bafe 2as2 Superconductor

    No full text
    The critical current density Jc is a crucial parameter to establish the actual technological potential of a superconducting (SC) material. Furthermore, being proportional to the SC gap parameter, it can reveal important information about the microscopic nature of the SC state in a given material. The FeAs-based class of SC materials has been a focus of intense scientific investigation lately, but direct investigation of Jc by transport measurements is rather scarce in literature. For these materials, it is very interesting to map Jc as a function of their distinct SC tuning parameters such as applied pressure and chemical substitution. In this work, detailed investigation of the field, temperature, and pressure dependences of transport critical current density Jc for Cu-substituted BaFe2As2 single crystals is reported. In this particular material, Cu-substitution has a strong magnetic pair breaking effect. However, with increasing pressure, this sample shows an almost twofold increase of T c, from 3.2K to 6.9K, which is followed by an increase in J c. These observations are discussed considering the presence of magnetic pinning centers in the Fe-As plane, which, in principle, could suggest effective routes to increase Jc in the this class of materials. © 2014 AIP Publishing LLC.11517Paglione, J., Greene, R.L., (2010) Nature Phys., 6, p. 645. , 10.1038/nphys1759Johnston, D.C., (2010) Adv. Phys., 59, p. 803. , 10.1080/00018732.2010.513480Bean, C., (1962) Phys. Rev. Lett., 8, p. 250. , 10.1103/PhysRevLett.8.250Garitezi, T., Adriano, C., Rosa, P., Bittar, E., Bufaiçal, L., Almeida, R., Granado, E., Pagliuso, P., (2013) Braz. J. Phys., 43, p. 223. , 10.1007/s13538-013-0144-zRotter, M., Tegel, M., Johrendt, D., (2008) Phys. Rev. Lett., 101, p. 107006. , 10.1103/PhysRevLett.101.107006Ni, N., Thaler, A., Yan, J.Q., Kracher, A., Colombier, E., Bud'Ko, S.L., Canfield, P.C., Hannahs, S.T., (2010) Phys. Rev. B, 82, p. 024519. , 10.1103/PhysRevB.82.024519Colonna, N., Profeta, G., Continenza, A., (2011) Phys. Rev. B, 83, p. 224526. , 10.1103/PhysRevB.83.224526Rosa, P.F.S., Adriano, C., Iwamoto, W., Garitezi, T.M., Grant, T., Fisk, Z., Pagliuso, P.G., (2012) Phys. Rev. B, 86, p. 165131. , 10.1103/PhysRevB.86.165131Rosa, P.F.S., Adriano, C., Garitezi, T.M., Grant, T., Fisk, Z., Urbano, R.R., Fernandes, R.R., Pagliuso, P.G., Unconventional superconductivity in substituted BaFe2As 2 revealed by pair-breaking studies Nature Scientific Reports, , (submitted)Alireza, P.L., Ko, Y.T.C., Gillett, J., Petrone, C.M., Cole, J.M., Lonzarich, G.G., Sebastian, S.E., (2009) J. Phys.: Condens. Matter, 21, p. 012208. , 10.1088/0953-8984/21/1/012208Tanatar, M.A., Ni, N., Martin, C., Gordon, R.T., Kim, H., Kogan, V.G., Samolyuk, G.D., Prozorov, R., (2009) Phys. Rev. B, 79, p. 094507. , 10.1103/PhysRevB.79.09450

    Electron Spin Resonance Of The Intermetallic Antiferromagnet Euin 2as 2

    No full text
    We present electron spin resonance (ESR) measurements in single-crystalline samples of EuIn 2As 2 grown using the In-flux method. This compound crystallizes in a hexagonal P6(3)/mmc structure and presents antiferromagnetic (AFM) ordering below T N=16 K. In the paramagnetic state, a single Eu2 + Dysonian ESR line with nearly temperature-independent g-factor and linewidth is observed, indicating the absence of Korringa-like relaxation of the Eu2 + ions. Approaching the AFM transition, we observe an anisotropic g-shift and a linewidth broadening which has a maximum at T N, suggesting that the short-range AFM correlation dominates the spin dynamics of the Eu2 + spins in this temperature range. Our results are discussed based on complementary data (magnetic susceptibility, heat capacity, and electrical resistivity measurements) that provide further details about the global macroscopic physical properties of the EuIn 2As 2 intermetallic compound. © 2012 American Physical Society.869Szytula, A., (2006) Materials Science - Poland, 25, p. 3Lohneysen, H.V., Rosch, A., Vojta, M., Wolfle, P., Fermi-liquid instabilities at magnetic quantum phase transitions (2007) Reviews of Modern Physics, 79 (3), pp. 1015-1075. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: RevModPhys.79.1015&metadataPrefix=oai_apsmeta_2, DOI 10.1103/RevModPhys.79.1015Stewart, G.R., (2011) Rev. Mod. Phys., 83, p. 1589. , RMPHAT 0034-6861 10.1103/RevModPhys.83.1589Pagliuso, P.G., Thompson, J.D., Hundley, M.F., Sarrao, J.L., Fisk, Z., (2001) Phys. Rev. B, 63, p. 054426. , PRBMDO 1098-0121 10.1103/PhysRevB.63.054426Goforth, A.M., (2008) Inorg Chem., 47, p. 11048. , INOCAJ 0020-1669 10.1021/ic801290uGranado, E., Pagliuso, P.G., Giles, C., Lora-Serrano, R., Yokaichiya, F., Sarrao, J.L., (2004) Phys. Rev. B, 69, p. 144411. , PRBMDO 1098-0121 10.1103/PhysRevB.69.144411Urbano, R.R., Pagliuso, P.G., Rettori, C., Oseroff, S.B., Sarrao, J.L., Schlottmann, P., Fisk, Z., Magnetic polaron and Fermi surface effects in the spin-flip scattering of EuB 6 (2004) Physical Review B - Condensed Matter and Materials Physics, 70 (14), pp. 1404011-1404014. , DOI 10.1103/PhysRevB.70.140401, 140401(R)Dyson, F.J., (1955) Phys. Rev., 98, p. 349. , PHRVAO 0031-899X 10.1103/PhysRev.98.349Abragam, A., Bleaney, B., (1970) Electron Paramagnetic Resonance of Transition Ions, , Clarendon, OxfordZimmerman, P.M., (1972) Phys. Rev. B, 6, p. 2783. , PRBMDO 1098-0121 10.1103/PhysRevB.6.2783Nagel, J., Baberschke, K., (1977) Crystal Field Effects in Metals, p. 66. , in edited by A. Furrer (Plenum, New YorkLacueva, G., Levy, P.M., Fert, A., (1985) Phys. Rev. B, 31, p. 6245. , PRBMDO 1098-0121 10.1103/PhysRevB.31.6245Poole, C.P., Farach, H.A., (1971) Relaxation in Magnetic Resonance, , Academic, New YorkDengler, E., Deisenhofer, J., Krug Von Nidda, H.A., Khim, S., Kim, J.S., Kim, K.H., Casper, F., Loidl, A., (2010) Phys. Rev. B, 81, p. 024406. , PRBMDO 1098-0121 10.1103/PhysRevB.81.024406Pascher, N., Deisenhofer, J., Krug Von Nidda, H.A., Hemmida, M., Jeevan, H.S., Gegenwart, P., Loidl, A., (2010) Phys. Rev. B, 82, p. 054525. , PRBMDO 1098-0121 10.1103/PhysRevB.82.054525Ying, J.J., (2010) Phys. Rev. B, 81, p. 052503. , PRBMDO 1098-0121 10.1103/PhysRevB.81.052503Garcia, F.A., (2012) New J. Phys., 14, p. 063005. , NJOPFM 1367-2630 10.1088/1367-2630/14/6/063005Rosa, P.F.S., (unpublished

    High Field Nuclear Magnetic Resonance In Transition Metal Substituted Bafe2as2

    No full text
    We report high field 75As nuclear magnetic resonance (NMR) measurements on Co and Cu substituted BaFe2As2 single crystals displaying same structural/magnetic transition T0?128 K. From our anisotropy studies in the paramagnetic state, we strikingly found virtually identical quadrupolar splitting and consequently the quadrupole frequency νQ?2.57(1) MHz for both compounds, despite the claim that each Cu delivers 2 extra 3d electrons in BaFe2As2 compared to Co substitution. These results allow us to conclude that a subtle change in the crystallographic structure, particularly in the Fe-As tetrahedra, must be the most probable tuning parameter to determine T0 in this class of superconductors rather than electronic doping. Furthermore, our NMR data around T0 suggest coexistence of tetragonal/paramagnetic and orthorhombic/antiferromagnetic phases between the structural and the spin density wave magnetic phase transitions, similarly to what was reported for K-doped BaFe2As2 [Urbano et al., Phys. Rev. Lett. 105, 107001 (2010)]. © 2014 AIP Publishing LLC.11517Urbano, R.R., Green, E.L., Moulton, W.G., Reyes, A.P., Kuhns, P.L., Bittar, E.M., Adriano, C., Pagliuso, P.G., (2010) Phys. Rev. Lett., 105, p. 107001. , 10.1103/PhysRevLett.105.107001Paglione, J., Greene, R.L., (2010) Nature Phys., 6, p. 645. , 10.1038/nphys1759Barzykin, V., Gor'Kov, L.P., (2009) Phys. Rev. B, 79, p. 134510. , 10.1103/PhysRevB.79.134510Granado, E., Mendonça Ferreira, L., Garcia, F., Azevedo D. G, M., Fabbris, G., Bittar, E.M., Adriano, C., Pagliuso, P.G., (2011) Phys. Rev. B, 83, p. 184508. , 10.1103/PhysRevB.83.184508Bittar, E.M., Adriano, C., Garitezi, T.M., Rosa, P.F.S., Mendonça Ferreira, L., Garcia, F., Azevedo D. G, M., Granado, E., (2011) Phys. Rev. Lett., 107, p. 267402. , 10.1103/PhysRevLett.107.267402Ideta, S., Yoshida, T., Nishi, I., Fujimori, A., Kotani, Y., Ono, K., Nakashima, Y., Arita, R., (2013) Phys. Rev. Lett., 110, p. 107007. , 10.1103/PhysRevLett.110.107007Yin, Z.P., Haule, K., Kotliar, G., (2011) Nature Mater., 10, p. 932. , 10.1038/nmat3120Rosa, P.F.S., Adriano, C., Iwamoto, W., Garitezi, T.M., Grant, T., Fisk, Z., Pagliuso, P.G., (2012) Phys. Rev. B, 86, p. 165131. , 10.1103/PhysRevB.86.165131Garitezi, T.M., Adriano, C., Rosa, P.F.S., Bittar, E.M., Bufaiçal, L., De Almeida, R.L., Granado, E., Pagliuso, P.G., (2013) Brazilian J. Phys., 43, p. 223. , 10.1007/s13538-013-0144-zRosa, P.F.S., Adriano, C., Garitezi, T.M., Grant, T., Fisk, Z., Urbano, R.R., Fernandes, E.R.R., Pagliuso, P.G., Unconventional superconductivity in substituted BaFe2As 2 revealed by pair-breaking studies Nature Scientific Reports, , (submitted)Ni, N., Thaler, A., Yan, J.Q., Kracher, A., Colombier, E., Bud'Ko, S.L., Canfield, P.C., Hannahs, S.T., (2010) Phys. Rev. B, 82, p. 024519. , 10.1103/PhysRevB.82.024519Urbano, R.R., Green, E.L., Moulton, W.G., Reyes, A.P., Kuhns, P.L., Bittar, E.M., Adriano, C., Pagliuso, P.G., (2011) J. Phys.: Conf. Ser., 273, p. 012107. , 10.1088/1742-6596/273/1/01210

    Electron Spin Resonance Of The Half-heusler Antiferromagnet Gdpdbi

    No full text
    We present electron spin resonance (ESR) measurements at X-Band frequency (ν=9.5 GHz) in powdered single crystal of the half-Heusler antiferromagnet GdPdBi grown using a Bi-flux method. In the paramagnetic state, a single Gd 3+ Dysonian ESR line is observed with a nearly temperature independent g-factor of ≈1.99(2). On the other hand, the ESR linewidth ΔH increases non-linearly with decreasing temperature, indicating that the dominant relaxation mechanism occurs via Gd3+ spin-spin interaction. Approaching the AFM transition at TN ≈13 K, the Gd3+ ESR line shifts to higher fields due to the emergence of short-range AFM correlations. Complementary data from macroscopic measurements such as magnetic susceptibility, heat capacity and electrical resistivity measurements provide further details about the global macroscopic physical properties of the GdPdBi compound. © 2013 Elsevier Ltd.1779597Hodeau, J.L., Marezio, M., Remeika, J.P., Chen, C.H., (1982) Solid State Communications, 42, pp. 97-102Sato, H., Fukuhara, T., Iwakawa, S., Aoki, Y., Sakamoto, I., Takayanagi, S., Wada, N., (1993) Physica B, 186-188, pp. 630-632Hundley, M.F., Serrao, J.L., Thompson, J.D., Movshovich, R., Jaime, M., Petrovic, C., Fisk, Z., (2001) Physical Review B, 65, p. 024401Israel, C., Bittar, E.M., Agüero, O.E., Urbano, R.R., Rettori, C., Torriani, I., Pagliuso, P.G., Borges, H.A., (2005) Physica B, 359-361, pp. 251-253Rosa, P.F.S., Adriano, C., Iwamoto, W., Garitezi, T.M., Grant, T., Fisk, Z., Pagliuso, P.G., (2012) Physical Review B, 86, p. 165131Malachias, A., Granado, E., Lora-Serrano, R., Pagliuso, P.G., Perez, C.A., (2008) Physical Review B, 77, p. 094425. , references thereinKhmelevskyi, S., (2012) Physical Review B, 86, p. 104429Wunderlich, W., Motoyama, Y., (2009) Advanced Intermetallic-Based Alloys for Extreme Environment and Energy Applications, 1128, pp. 21-26Sekimoto, T., Kurosaki, K., Muta, H., Yamanaka, S., (2007) Journal of Applied Physics, 102, p. 023705Tobola, J., Pierre, J., (2000) Journal of Alloys and Compounds, 296, pp. 243-252Feng, W., Xiao, D., Zhang, Y., Yao, Y., (2010) Physical Review B, 82, p. 235121Chadov, S., Qi, X., Kübler, J., Fecher, G.H., Felser, C., Zhang, S.C., (2010) Nature Materials, 9, pp. 541-545Lin, H., Wray, L.A., Xia, Y., Xu, S., Jia, S., Cava, R.J., Bansil, A., Hasan, M.Z., (2010) Nature Materials, 9, pp. 546-549Sekimoto, T., Kurosaki, K., Muta, H., Yamanaka, S., (2007) Materials Transactions, 48, pp. 2079-2082Gofryk, K., Kaczorowski, D., Plackowski, T., Leithe-Jasper, A., Grin, Y., (2011) Physical Review B, 84, p. 035208Pagliuso, P.G., Thompson, J.D., Hundley, M.F., Sarrao, J.L., Fisk, Z., (2001) Physical Review B, 63, p. 054426Granado, E., Pagliuso, P.G., Giles, C., Lora-Serrano, R., Yokaichiya, F., Sarrao, J.L., (2004) Physical Review B, 69, p. 144411Granado, E., Uchoa, B., Malachias, A., Lora-Serrano, R., Pagliuso, P.G., Westfahl, Jr.H., (2006) Physical Review B, 74, p. 214428Pires, M.A., Mendonça Ferreira, L., Duque, J.G.S., Urbano, R.R., Agüero, O., Torriani, I., Rettori, C., Pagliuso, P.G., (2006) Journal of Applied Physics, 99, pp. 08J311Duque, J.G.S., Adriano, C., Lora-Serrano, R., Rettori, C., Urbano, R.R., Sarrao, J.L., Oseroff, S.B., Pagliuso, P.G., (2008) Journal of Applied Physics, 103, pp. 07B733Duque, J.G.S., Miranda, E., Belon, A.M.O., Bufaiçal, L., Rettori, C., Pagliuso, P.G., (2007) Physica B Condensed Matter, 398, pp. 430-433Nakamura, H., Ito, K., Wada, H., Shiga, M., (1993) Physica B, 186-188, pp. 633-635Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Hundley, M.F., Sercheli, M.S., Urbano, R.R., Rettori, C., Oseroff, S.B., (2001) Physical Review B, 63, p. 092406Bouvier, M., Lethuillier, P., Schmitt, D., (1991) Physical Review B, 43, pp. 13137-13144Blanco, J.A., Gignoux, D., Schmitt, D., (1991) Physical Review B, 43, pp. 13145-13151Süllow, S., Prasad, I., Aronson, M.C., Sarrao, J.L., Fisk, Z., Hristova, D., Lacerda, A.H., Gibbs, D., (1988) Physical Review B, 57, p. 5860Feher, G., Kip, A.F., (1955) Physical Review, 98, pp. 337-348Dyson, F.J., (1955) Physical Review, 98, pp. 349-359Abragam, A., Bleaney, B., (1970) EPR of Transition Ions, , Clarendon Press OxfordRettori, C., Kim, H.M., Chock, E.P., Davidov, D., (1974) Physical Review B, 10, pp. 1826-1835. , references thereinZhid Hasan, M., Moore, J.E., (2011) Annual Review of Condensed Matter Physics, 2, pp. 55-78Butch, N.P., Syers, P., Kirshenbaum, K., Hope, A.P., Paglione, J., (2011) Physical Review B, 84, pp. 220504
    corecore