7 research outputs found

    Cell behavior on a CCN1 functionalized elastin-mimetic protein polymer

    Get PDF
    a b s t r a c t We report the design of an elastin-mimetic triblock copolymer with the ability to guide endothelial cell adhesion, spreading, and migration while maintaining the elastomeric properties of the protein polymer. The V2 ligand sequence from matricellular protein CCN1 (cysteine-rich 61, CYR61) was multimerized and cloned into elastin polymer LysB10, creating LysB10.V2. Cell adhesion studies demonstrated that a LysB10.V2 surface density of at least 40 pmol/cm 2 was required to elicit cell attachment. Peptide blocking studies confirmed V2 specific engagement with integrin receptor a v b 3 (P < 0.05) and we observed the formation of actin stress fiber networks and vinculin clustering, characteristic of focal adhesion assembly. Haptotatic migration assays demonstrated the ability of LysB10.V2 surfaces to stimulate migration of endothelial cells (P < 0.05). Significantly, we illustrated the ability of LysB10.V2 to support a quiescent endothelium. The CCN1 molecule functions to support many key biological processes necessary for tissue repair and thus presents a promising target for bioengineering applications. Collectively, our results demonstrate the potential to harness CCN1 specific function in the design of new scaffold materials for applications in regenerative medicine

    Micelle density regulated by a reversible switch of protein secondary structure

    No full text
    Protein secondary structures may exhibit reversible transitions that occur in an abrupt and controllable manner. In this report, we demonstrate that such transitions may be utilized in the design of a "smart" protein micellar system, in which a stimulus-induced change in protein structure triggers a rapid change in micelle compacticity and size. Specifically, recombinant DNA methods were used to prepare a protein triblock copolymer containing a central hydrophilic block and two hydrophobic end blocks derived from elastin-mimetic peptide sequences. Below the copolymer inverse transition temperature (T-t), dilute solutions of this amphiphilic protein formed monodispersed micelles in a narrow range of R-H of similar to 100 nm. When the the temperature was raised above T-t, an abrupt increase in micelle internal density was observed with a concomitant reduction in micelle size. This reversible change in micelle compacticity was triggered by helix-to-sheet protein folding transition. Significantly, these protein polymer-based micelles, which are rapidly responsive to environmental stimuli, establish a new mechanism for the design of controlled drug delivery vehicles
    corecore