42 research outputs found
Recommended from our members
Electrostatic Dust Detection and Removal for ITER
We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 μm spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm² with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations
Recommended from our members
Neutron source strength monitors for ITER
There are several goals for the neutron source strength monitor system for the International Thermonuclear Experimental Reactor (ITER). Desired is a stable, reliable, time-dependent neutron detection system which exhibits a wide dynamic range and broad energy response to incident neutrons while being insensitive to gamma rays and having low noise characteristics in a harsh reactor environment. This system should be able to absolutely calibrated in-situ using various neutron sources. An array of proportional counters of varying sensitivities is proposed along with the most promising possible locations. One proposed location is in the pre-shields of the neutron camera collimators which would allow an integrated design of neutron systems with good detector access. As part of an ongoing conceptual design for this system, the detector-specific issues of dynamic range, performance monitoring, and sensitivity will be presented. The location options of the array will be discussed and most importantly, the calibration issues associated with a heavily shielded vessel will be presented
Gyro-electron ghost images due to microchannel plate operation in transverse magnetic fields
A multi-anode microchannel plate (MCP) detector was operated in a transverse magnetic field. When a collimated ion beam of approx.4-mm diameter impinged on one area of the plate, ghost images were observed elsewhere on the plate at anodes up to several centimeters from the beam spot. This effect is due to secondary electrons which are emitted from the interstitial surfaces around the MCP pores and returned to the surface of the plate under the influence of E-tilde X B-tilde fields, where E-tilde is the electric field perpendicular to the plate due to the MCP bias potential and B-tilde is the externally applied transverse magnetic field. A regenerative process is observed in which the secondary electrons traverse the surface of the plate in the E-tilde X B-tilde direction by successive gyro-orbit steps. A method for suppressing the ghost images is discussed
Characteristics of solid-target charge-exchange analyzers for energetic ion diagnostics on tokamaks
Compact electrostatic charge-exchange analyzers have been constructed for installation in areas of high magnetic fields and restricted access near tokamak fusion devices. The analyzers employed carbon stripping foils, and have been calibrated for proton energies between 1 and 70 keV. They have been successfully used to study charge-exchange losses in auxiliary-heated tokamak plasmas