499 research outputs found
Can Thermoclines Be a Cue to Prey Distribution for Marine Top Predators? A Case Study with Little Penguins
The use of top predators as bio-platforms is a modern approach to understanding how physical changes in the environment may influence their foraging success. This study examined if the presence of thermoclines could be a reliable signal of resource availability for a marine top predator, the little penguin (Eudyptula minor). We studied weekly foraging activity of 43 breeding individual penguins equipped with accelerometers. These loggers also recorded water temperature, which we used to detect changes in thermal characteristics of their foraging zone over 5 weeks during the penguin’s guard phase. Data showed the thermocline was detected in the first 3 weeks of the study, which coincided with higher foraging efficiency. When a thermocline was not detected in the last two weeks, foraging efficiency decreased as well. We suggest that thermoclines can represent temporary markers of enhanced food availability for this top-predator to which they must optimally adjust their breeding cycle
Diagnóstico situacional Hospital Gaspar García Laviana- Rivas y Ernesto Sequeira- Región Autónoma Atlántico Sur. Nicaragua. Año 2004.
Estudio de tipo descriptivo de corte transversal, en los Hospitales Ernesto Sequeira de la Región Autónoma del Atlántico Sur y Gaspar García Laviana de Rivas durante el año 2004. Se encontró que en ambos Hospitales brindan atención general, de prioridad Materno-Infantil, ubicados en las cabeceras de los departamentos; pertenecen al Segundo nivel de atención, con un nivel de complejidad básico, de referencias departamental para los centros de salud, cuyo propietario es el Ministerio de Salud. Con poblaciones objetivos mayores de 175,000 habitantes donde el 65% de las personas son niños o mujeres en edad de procrear. La cartera de servicios que ofertan ambos hospitales es acorde a su complejidad en las que se encuentran las cuatro especialidades básicas Medicina Interna, Cirugía General, Pediatría y Gineco obstetricia y los servicios de apoyo tales como: Farmacia, Radiología, Laboratorio así como en su estructura física cuenta con consultorios para consulta externa, emergencia, quirófanos, salas de parto y camas censables. El número de recursos humanos en cada hospital es mayor a 300 personas, donde el 55 al 60% es asistencial. En los recursos financieros el 80% del presupuesto proviene de fondo fiscal y el mayor gasto es en el pago de recursos humanos. El equipamiento asistencial de los hospitales se encuentra desfasado y obsoleto, entre el 20 al 40% en regular y muy mal estado y tienen más de un año de estar sin funcionamiento y no han sido reparados. El modelo de gestión de ambos hospitales es tradicional, sin implementación de herramientas gerenciales, ni toma de decisiones. La producción de servicios es baja en relación a su capacidad instalada
Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring
Acknowledgements K. Ashbrook, M. Barrueto, K. Elner, A. Hargreaves, S. Jacobs, G. Lancton, M. LeVaillant, E. Grosbellet, A. Moody, A. Ronston, J. Provencher, P. Smith, K. Woo and P. Woodward helped in the field. J. Nakoolak kept us safe from bears. N. Sapir and two anonymous reviewers provided very useful comments on an earlier version of our manuscript. R. Armstrong at the Nunavut Research Institute, M. Mallory at the Canadian Wildlife Service Northern Research Division and C. Eberl at National Wildlife Research Centre in Ottawa provided logistical support. F. Crenner, N. Chatelain and M. Brucker customized the GPS at the IPHC-CNRS. KHE received financial support through a NSERC Vanier Canada Graduate Scholarship, ACUNS Garfield Weston Northern Studies scholarship and AINA Jennifer Robinson Scholarship and JFH received NSERC Discovery Grant funding. J. Welcker generously loaned some accelerometers. All procedures were approved under the guidelines of the Canadian Council for Animal Care.Peer reviewedPublisher PD
Vision and Foraging in Cormorants: More like Herons than Hawks?
Background
Great cormorants (Phalacrocorax carbo L.) show the highest known foraging yield for a marine predator and they are often perceived to be in conflict with human economic interests. They are generally regarded as visually-guided, pursuit-dive foragers, so it would be expected that cormorants have excellent vision much like aerial predators, such as hawks which detect and pursue prey from a distance. Indeed cormorant eyes appear to show some specific adaptations to the amphibious life style. They are reported to have a highly pliable lens and powerful intraocular muscles which are thought to accommodate for the loss of corneal refractive power that accompanies immersion and ensures a well focussed image on the retina. However, nothing is known of the visual performance of these birds and how this might influence their prey capture technique.
Methodology/Principal Findings
We measured the aquatic visual acuity of great cormorants under a range of viewing conditions (illuminance, target contrast, viewing distance) and found it to be unexpectedly poor. Cormorant visual acuity under a range of viewing conditions is in fact comparable to unaided humans under water, and very inferior to that of aerial predators. We present a prey detectability model based upon the known acuity of cormorants at different illuminances, target contrasts and viewing distances. This shows that cormorants are able to detect individual prey only at close range (less than 1 m).
Conclusions/Significance
We conclude that cormorants are not the aquatic equivalent of hawks. Their efficient hunting involves the use of specialised foraging techniques which employ brief short-distance pursuit and/or rapid neck extension to capture prey that is visually detected or flushed only at short range. This technique appears to be driven proximately by the cormorant's limited visual capacities, and is analogous to the foraging techniques employed by herons
From Sensor Data to Animal Behaviour: An Oystercatcher Example
Animal-borne sensors enable researchers to remotely track animals, their physiological state and body movements. Accelerometers, for example, have been used in several studies to measure body movement, posture, and energy expenditure, although predominantly in marine animals. In many studies, behaviour is often inferred from expert interpretation of sensor data and not validated with direct observations of the animal. The aim of this study was to derive models that could be used to classify oystercatcher (Haematopus ostralegus) behaviour based on sensor data. We measured the location, speed, and tri-axial acceleration of three oystercatchers using a flexible GPS tracking system and conducted simultaneous visual observations of the behaviour of these birds in their natural environment. We then used these data to develop three supervised classification trees of behaviour and finally applied one of the models to calculate time-activity budgets. The model based on accelerometer data developed to classify three behaviours (fly, terrestrial locomotion, and no movement) was much more accurate (cross-validation error = 0.14) than the model based on GPS-speed alone (cross-validation error = 0.35). The most parsimonious acceleration model designed to classify eight behaviours could distinguish five: fly, forage, body care, stand, and sit (cross-validation error = 0.28); other behaviours that were observed, such as aggression or handling of prey, could not be distinguished. Model limitations and potential improvements are discussed. The workflow design presented in this study can facilitate model development, be adapted to a wide range of species, and together with the appropriate measurements, can foster the study of behaviour and habitat use of free living animals throughout their annual routine
Edible crabs “Go West”: migrations and incubation cycle of Cancer pagurus revealed by electronic tags
Crustaceans are key components of marine ecosystems which, like other exploited marine taxa, show seasonable patterns of distribution and activity, with consequences for their availability to capture by targeted fisheries. Despite concerns over the sustainability of crab fisheries worldwide, difficulties in observing crabs’ behaviour over their annual cycles, and the timings and durations of reproduction, remain poorly understood. From the release of 128 mature female edible crabs tagged with electronic data storage tags (DSTs), we demonstrate predominantly westward migration in the English Channel. Eastern Channel crabs migrated further than western Channel crabs, while crabs released outside the Channel showed little or no migration. Individual migrations were punctuated by a 7-month hiatus, when crabs remained stationary, coincident with the main period of crab spawning and egg incubation. Incubation commenced earlier in the west, from late October onwards, and brooding locations, determined using tidal geolocation, occurred throughout the species range. With an overall return rate of 34%, our results demonstrate that previous reluctance to tag crabs with relatively high-cost DSTs for fear of loss following moulting is unfounded, and that DSTs can generate precise information with regards life-history metrics that would be unachievable using other conventional means
Accuracy of ARGOS Locations of Pinnipeds at-Sea Estimated Using Fastloc GPS
Background: ARGOS satellite telemetry is one of the most widely used methods to track the movements of free-ranging marine and terrestrial animals and is fundamental to studies of foraging ecology, migratory behavior and habitat-use. ARGOS location estimates do not include complete error estimations, and for many marine organisms, the most commonly acquired locations (Location Class 0, A, B, or Z) are provided with no declared error estimate.Methodology/Principal Findings: We compared the accuracy of ARGOS locations to those obtained using Fastloc GPS from the same electronic tags on five species of pinnipeds: 9 California sea lions (Zalophus californianus), 4 Galapagos sea lions (Zalophus wollebaeki), 6 Cape fur seals (Arctocephalus pusillus pusillus), 3 Australian fur seals (A. p. doriferus) and 5 northern elephant seals (Mirounga angustirostris). These species encompass a range of marine habitats (highly pelagic vs coastal), diving behaviors (mean dive durations 2–21 min) and range of latitudes (equator to temperate). A total of 7,318 ARGOS positions and 27,046 GPS positions were collected. Of these, 1,105 ARGOS positions were obtained within five minutes of a GPS position and were used for comparison. The 68th percentile ARGOS location errors as measured in this study were LC-30.49 km, LC-2 1.01 km, LC-1 1.20 km, LC-0 4.18 km, LC-A 6.19 km, LC-B 10.28 km. Conclusions/Significance: The ARGOS errors measured here are greater than those provided by ARGOS, but within the range of other studies. The error was non-normally distributed with each LC highly right-skewed. Locations of species that make short duration dives and spend extended periods on the surface (sea lions and fur seals) had less error than species like elephant seals that spend more time underwater and have shorter surface intervals. Supplemental data (S1) are provided allowing the creation of density distributions that can be used in a variety of filtering algorithms to improve the quality of ARGOS tracking data.<br /
Long-Term GPS Tracking of Ocean Sunfish Mola mola Offers a New Direction in Fish Monitoring
Satellite tracking of large pelagic fish provides insights on free-ranging behaviour, distributions and population structuring. Up to now, such fish have been tracked remotely using two principal methods: direct positioning of transmitters by Argos polar-orbiting satellites, and satellite relay of tag-derived light-level data for post hoc track reconstruction. Error fields associated with positions determined by these methods range from hundreds of metres to hundreds of kilometres. However, low spatial accuracy of tracks masks important details, such as foraging patterns. Here we use a fast-acquisition global positioning system (Fastloc GPS) tag with remote data retrieval to track long-term movements, in near real time and position accuracy of <70 m, of the world's largest bony fish, the ocean sunfish Mola mola. Search-like movements occurred over at least three distinct spatial scales. At fine scales, sunfish spent longer in highly localised areas with faster, straighter excursions between them. These ‘stopovers’ during long-distance movement appear consistent with finding and exploiting food patches. This demonstrates the feasibility of GPS tagging to provide tracks of unparalleled accuracy for monitoring movements of large pelagic fish, and with nearly four times as many locations obtained by the GPS tag than by a conventional Argos transmitter. The results signal the potential of GPS-tagged pelagic fish that surface regularly to be detectors of resource ‘hotspots’ in the blue ocean and provides a new capability for understanding large pelagic fish behaviour and habitat use that is relevant to ocean management and species conservation
- …