4 research outputs found

    Effect of wear-corrosion of reduced graphene oxide functionalized with hyaluronic acid on inflammatory and proteomic response of J774A.1 macrophages

    Get PDF
    The presence of a worn surface in the implanted material, as in the case of a replacement of a damaged osteoarticular joint, is the normal condition after implantation. This manuscript focuses precisely on the comparative study of the cellular behavior on worn CoCr surfaces, analyzing the effect of different surface modifications on macrophages’ responses. CoCr surfaces were modified by the deposition of electrochemically reduced graphene oxide (CoCrErGO), followed by additional surface functionalization with hyaluronic acid (CoCrErGOHA). After the wear corrosion processes, the macrophage response was studied. In addition, macrophage supernatants exposed to the surfaces, before and after wear, were also evaluated for osteoblast response through the analysis of the metabolic activity, plasma membrane damage, and phosphatase alkaline activity (ALP). The proteomic analysis and the quantitative TNF-α/IL-10 ratios of the J774A.1 macrophages exposed to the surfaces under study showed a polarization shift from M0 (basal state) to M1, associated with the pro-inflammatory response of all surfaces. A lower M1 polarization was observed upon exposure to the surface modification with ErGO, whereas posterior HA functionalization attenuated, even more, the M1 polarization. The wear corrosion process contributed to inflammation and exacerbated the M1 polarization response on macrophages to CoCr, which was diminished for the ErGO and attenuated the most for the ErGOHA surfaces. Comparative proteomics showed that the pathways related to M1 polarization were downregulated on the surfaces of CoCrErGOHA, which suggests mechanisms for the observed attenuation of M1 polarization. The suitable immuno-modulatory potential induced by the ErGOHA surface, with and without wear, together with the stimulation of ALP activity in osteoblasts induced by macrophage supernatants, promotes the mineralization processes necessary for bone repair. This makes it feasible to consider the adsorption of ErGOHA on CoCr as a recommended surface treatment for the use of biomaterials in osseous joint applications.Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicada

    Effect of Wear-Corrosion of Reduced Graphene Oxide Functionalized with Hyaluronic Acid on Inflammatory and Proteomic Response of J774A.1 Macrophages

    No full text
    The presence of a worn surface in the implanted material, as in the case of a replacement of a damaged osteoarticular joint, is the normal condition after implantation. This manuscript focuses precisely on the comparative study of the cellular behavior on worn CoCr surfaces, analyzing the effect of different surface modifications on macrophages’ responses. CoCr surfaces were modified by the deposition of electrochemically reduced graphene oxide (CoCrErGO), followed by additional surface functionalization with hyaluronic acid (CoCrErGOHA). After the wear corrosion processes, the macrophage response was studied. In addition, macrophage supernatants exposed to the surfaces, before and after wear, were also evaluated for osteoblast response through the analysis of the metabolic activity, plasma membrane damage, and phosphatase alkaline activity (ALP). The proteomic analysis and the quantitative TNF-α/IL-10 ratios of the J774A.1 macrophages exposed to the surfaces under study showed a polarization shift from M0 (basal state) to M1, associated with the pro-inflammatory response of all surfaces. A lower M1 polarization was observed upon exposure to the surface modification with ErGO, whereas posterior HA functionalization attenuated, even more, the M1 polarization. The wear corrosion process contributed to inflammation and exacerbated the M1 polarization response on macrophages to CoCr, which was diminished for the ErGO and attenuated the most for the ErGOHA surfaces. Comparative proteomics showed that the pathways related to M1 polarization were downregulated on the surfaces of CoCrErGOHA, which suggests mechanisms for the observed attenuation of M1 polarization. The suitable immuno-modulatory potential induced by the ErGOHA surface, with and without wear, together with the stimulation of ALP activity in osteoblasts induced by macrophage supernatants, promotes the mineralization processes necessary for bone repair. This makes it feasible to consider the adsorption of ErGOHA on CoCr as a recommended surface treatment for the use of biomaterials in osseous joint applications.Fil: SĂĄnchez LĂłpez, Luna. Consejo Superior de Investigaciones CientĂ­ficas. Centro de Investigaciones BiolĂłgicas; España. Consejo Superior de Investigaciones CientĂ­ficas. Centro Nacional de Investigaciones MetalĂșrgicas; España. Universidad AutĂłnoma de Madrid; EspañaFil: Ropero de Torres, Noelia. Consejo Superior de Investigaciones CientĂ­ficas. Centro de Investigaciones BiolĂłgicas; EspañaFil: Chico, BelĂ©n. Consejo Superior de Investigaciones CientĂ­ficas. Centro Nacional de Investigaciones MetalĂșrgicas; EspañaFil: Fagali, Natalia Soledad. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicadas; ArgentinaFil: De los RĂ­os, Vivian. Consejo Superior de Investigaciones CientĂ­ficas. Centro de Investigaciones BiolĂłgicas; EspañaFil: Escudero, MarĂ­a Lorenza. Consejo Superior de Investigaciones CientĂ­ficas. Centro Nacional de Investigaciones MetalĂșrgicas; EspañaFil: GarcĂ­a-Alonso, MarĂ­a Cristina. Consejo Superior de Investigaciones CientĂ­ficas. Centro Nacional de Investigaciones MetalĂșrgicas; EspañaFil: Lozano Puerto, Rosa MarĂ­a. Consejo Superior de Investigaciones CientĂ­ficas. Centro de Investigaciones BiolĂłgicas; Españ

    The Expansion of Inosine at the Wobble Position of tRNAs, and Its Role in the Evolution of Proteomes

    No full text
    The modification of adenosine to inosine at the first position of transfer RNA (tRNA) anticodons (I34) is widespread among bacteria and eukaryotes. In bacteria, the modification is found in tRNAArg and is catalyzed by tRNA adenosine deaminase A, a homodimeric enzyme. In eukaryotes, I34 is introduced in up to eight different tRNAs by the heterodimeric adenosine deaminase acting on tRNA. This substrate expansion significantly influenced the evolution of eukaryotic genomes in terms of codon usage and tRNA gene composition. However, the selective advantages driving this process remain unclear. Here, we have studied the evolution of I34, tRNA adenosine deaminase A, adenosine deaminase acting on tRNA, and their relevant codons in a large set of bacterial and eukaryotic species. We show that a functional expansion of I34 to tRNAs other than tRNAArg also occurred within bacteria, in a process likely initiated by the emergence of unmodified A34-containing tRNAs. In eukaryotes, we report on a large variability in the use of I34 in protists, in contrast to a more uniform presence in fungi, plans, and animals. Our data support that the eukaryotic expansion of I34-tRNAs was driven by the improvement brought by these tRNAs to the synthesis of proteins highly enriched in certain amino acids.This work was supported by the Spanish Ministry of Economy and Competitiveness (grant numbers BES2013-064551 to [A.R.-Y.], and BIO2015-64572 to [L.R.d.P.])

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore