1,659 research outputs found

    The New Industrial State

    Get PDF

    Thirteen category recognition map of Yellowstone National Park produced from ERTS-1 MSS data

    Get PDF
    There are no author-identified significant results in this report

    Antigenic Complementarity in the Origins of Autoimmunity: A General Theory Illustrated With a Case Study of Idiopathic Thrombocytopenia Purpura

    Get PDF
    We describe a novel, testable theory of autoimmunity, outline novel predictions made by the theory, and illustrate its application to unravelling the possible causes of idiopathic thrombocytopenia purpura (ITP). Pairs of stereochemically complementary antigens induce complementary immune responses (antibody or T-cell) that create loss of regulation and civil war within the immune system itself. Antibodies attack antibodies creating circulating immune complexes; T-cells attack T-cells creating perivascular cuffing. This immunological civil war abrogates the self-nonself distinction. If at least one of the complementary antigens mimics a self antigen, then this unregulated immune response will target host tissues as well. Data demonstrating that complementary antigens are found in some animal models of autoimmunity and may be present in various human diseases, especially ITP, are reviewed. Specific mechanisms for preventing autoimmunity or suppressing existing autoimmunity are derived from the theory, and critical tests proposed. Finally, we argue that Koch's postulates are inadequate for establishing disease causation for multiple-antigen diseases and discuss the possibility that current research has failed to elucidate the causes of human autoimmune diseases because we are using the wrong criteria

    Exact and approximate dynamics of the quantum mechanical O(N) model

    Full text link
    We study a quantum dynamical system of N, O(N) symmetric, nonlinear oscillators as a toy model to investigate the systematics of a 1/N expansion. The closed time path (CTP) formalism melded with an expansion in 1/N is used to derive time evolution equations valid to order 1/N (next-to-leading order). The effective potential is also obtained to this order and its properties areelucidated. In order to compare theoretical predictions against numerical solutions of the time-dependent Schrodinger equation, we consider two initial conditions consistent with O(N) symmetry, one of them a quantum roll, the other a wave packet initially to one side of the potential minimum, whose center has all coordinates equal. For the case of the quantum roll we map out the domain of validity of the large-N expansion. We discuss unitarity violation in the 1/N expansion; a well-known problem faced by moment truncation techniques. The 1/N results, both static and dynamic, are also compared to those given by the Hartree variational ansatz at given values of N. We conclude that late-time behavior, where nonlinear effects are significant, is not well-described by either approximation.Comment: 16 pages, 12 figrures, revte

    Infrared Behaviour of Systems With Goldstone Bosons

    Full text link
    We develop various complementary concepts and techniques for handling quantum fluctuations of Goldstone bosons.We emphasise that one of the consequences of the masslessness of Goldstone bosons is that the longitudinal fluctuations also have a diverging susceptibility characterised by an anomalous dimension (d2)(d-2) in space-time dimensions 2<d<42<d<4.In d=4d=4 these fluctuations diverge logarithmically in the infrared region.We show the generality of this phenomenon by providing three arguments based on i). Renormalization group flows, ii). Ward identities, and iii). Schwinger-Dyson equations.We obtain an explicit form for the generating functional of one-particle irreducible vertices of the O(N) (non)--linear σ\sigma--models in the leading 1/N approximation.We show that this incorporates all infrared behaviour correctly both in linear and non-linear σ\sigma-- models. Our techniques provide an alternative to chiral perturbation theory.Some consequences are discussed briefly.Comment: 28 pages,2 Figs, a new section on some universal features of multipion processes has been adde

    Systematic 1/N1/N corrections for bosonic and fermionic vector models without auxiliary fields

    Full text link
    In this paper, colorless bilocal fields are employed to study the large NN limit of both fermionic and bosonic vector models. The Jacobian associated with the change of variables from the original fields to the bilocals is computed exactly, thereby providing an exact effective action. This effective action is shown to reproduce the familiar perturbative expansion for the two and four point functions. In particular, in the case of fermionic vector models, the effective action correctly accounts for the Fermi statistics. The theory is also studied non-perturbatively. The stationary points of the effective action are shown to provide the usual large NN gap equations. The homogeneous equation associated with the quadratic (in the bilocals) action is simply the two particle Bethe Salpeter equation. Finally, the leading correction in 1N1\over N is shown to be in agreement with the exact SS matrix of the model.Comment: 24 pages, uses REVTEX macros. Replaced with final version to appear in Phys. Rev.

    The next to leading order effective potential in the 2+1 dimensional Nambu-Jona-Lasinio model at finite temperature

    Full text link
    The finite temperature effective potential in the 2+1 dimensional Nambu-Jona-Lasinio model is constructed up to the next to leading order in the large NN expansion, where NN is the number of flavors in the model. The distinctive feature of the analysis is an inclusion of an additional scalar field, which allows us to circumvent the well known, and otherwise unavoidable problem with the imaginary contribution to the effective potential. In accordance with the Mermin-Wagner-Coleman theorem, applied to the dimensionally reduced subsystem of the zero Matsubara modes of the composite boson fields, the finite temperature effective potential reveals a global minimum at the zero of the composite order parameter. This allows us to conclude that the continuous global symmetry of the NJL model is not broken for any arbitrarily small, finite temperature.Comment: 12 pages, 4 figures, REVTe
    corecore