82 research outputs found

    An Outlook on the Localisation and Structure-Function Relationships of R Proteins in Solanum

    Get PDF
    The co-evolution of plants and plant-pathogens shaped a multi-layered defence system in plants, in which Resistance proteins (R proteins) play a significant role. A fundamental understanding of the functioning of these R proteins and their position in the broader defence system of the plant is essential. Sub-project 3 of the BIOEXPLOIT programme studies how R proteins are activated upon effector recognition and how recognition is conveyed in resistance signalling pathways, using the solanaceous R proteins Rx1 (from S. tuberosum spp. andigena; conferring extreme resistance against Potato Virus X), I-2 (from S. lycopersicon; mediating resistance to Fusarium oxysporum) and Mi-1.2 (from S. lycopersicon; conferring resistance to Meloidogyne incognita) as model systems. The results obtained in this project will serve as a model for other R proteins and will be translated to potential applications or alternative strategies for disease resistance. These include the modification of the recognition specificity of R proteins with the aim to obtain broad spectrum resistance to major pathogens in potato

    3D Domain Swapping Causes Extensive Multimerisation of Human Interleukin-10 When Expressed In Planta

    Get PDF
    Heterologous expression platforms of biopharmaceutical proteins have been significantly improved over the last decade. Further improvement can be established by examining the intrinsic properties of proteins. Interleukin-10 (IL-10) is an anti-inflammatory cytokine with a short half-life that plays an important role in re-establishing immune homeostasis. This homodimeric protein of 36 kDa has significant therapeutic potential to treat inflammatory and autoimmune diseases. In this study we show that the major production bottleneck of human IL-10 is not protein instability as previously suggested, but extensive multimerisation due to its intrinsic 3D domain swapping characteristic. Extensive multimerisation of human IL-10 could be visualised as granules in planta. On the other hand, mouse IL-10 hardly multimerised, which could be largely attributed to its glycosylation. By introducing a short glycine-serine-linker between the fourth and fifth alpha helix of human IL-10 a stable monomeric form of IL-10 (hIL-10mono) was created that no longer multimerised and increased yield up to 20-fold. However, hIL-10mono no longer had the ability to reduce pro-inflammatory cytokine secretion from lipopolysaccharide-stimulated macrophages. Forcing dimerisation restored biological activity. This was achieved by fusing human IL-10mono to the C-terminal end of constant domains 2 and 3 of human immunoglobulin A (Fca), a natural dimer. Stable dimeric forms of IL-10, like Fca-IL-10, may not only be a better format for improved production, but also a more suitable format for medical applications

    Expression of Foot-and-Mouth Disease Virus Capsid Proteins in Silkworm-Baculovirus Expression System and Its Utilization as a Subunit Vaccine

    Get PDF
    Background: Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that causes severe economic loss in susceptible cloven-hoofed animals. Although the traditional inactivated vaccine has been proved effective, it may lead to a new outbreak of FMD because of either incomplete inactivation of FMDV or the escape of live virus from vaccine production workshop. Thus, it is urgent to develop a novel FMDV vaccine that is safer, more effective and more economical than traditional vaccines. Methodology and Principal Findings: A recombinant silkworm baculovirus Bm-P12A3C which contained the intact P1-2A and 3C protease coding regions of FMDV Asia 1/HNK/CHA/05 was developed. Indirect immunofluorescence test and sandwich-ELISA were used to verify that Bm-P12A3C could express the target cassette. Expression products from silkworm were diluted to 30 folds and used as antigen to immunize cattle. Specific antibody was induced in all vaccinated animals. After challenge with virulent homologous virus, four of the five animals were completely protected, and clinical symptoms were alleviated and delayed in the remaining one. Furthermore, a PD50 (50 % bovine protective dose) test was performed to assess the bovine potency of the subunit vaccine. The result showed the subunit vaccine could achieve 6.34 PD50 per dose

    Formation of disulfide bridges by a single-chain Fv antibody in the reducing ectopic environment of the plant cytosol

    No full text
    Disulfide bridge formation in the reducing environment of the cytosol is considered a rare event and is mostly linked to inactivation of protein activity. In this report the in vivo redox state of a single-chain Fv (scFv) antibody fragment in the plant cytosol was investigated. The scFv antibody fragment consists of the variable light and heavy chain domains from a mouse IgG antibody, which are connected by a flexible linker peptide. In each domain one disulfide bridge is present. The functionality of antibodies, which are normally secreted via the oxidizing environment of the endoplasmic reticulum, depends on the formation of intramolecular disulfide bridges. We demonstrate that a scFv can form intramolecular disulfide bridges and is functionally expressed in the cytosol of stably transformed plants. In addition, the formation of intermolecular disulfide bridges through a cysteine present in the linker peptide was observed. In contrast, transient expression in tobacco protoplasts resulted in a cytosolic scFv lacking disulfide bridges, which had a substantially reduced affinity for the antigen. This indicates that functionality rather than stability is determined by the presence of disulfide bridges in the in planta-expressed scFv antibody. The controversial observation of disulfide bond formation in the cytosol is discussed
    • …
    corecore