12,482 research outputs found

    Investigation of high energy radiation from a plasma focus

    Get PDF
    Included are seventeen topics covering the experimental setup, diagnostics, analyses and various applications of the plasma focus. An invention, a hypocycloidal-pinch apparatus, is also included

    Klein tunneling and Dirac potentials in trapped ions

    Get PDF
    We propose the quantum simulation of the Dirac equation with potentials, allowing the study of relativistic scaterring and the Klein tunneling. This quantum relativistic effect permits a positive-energy Dirac particle to propagate through a repulsive potential via the population transfer to negative-energy components. We show how to engineer scalar, pseudoscalar, and other potentials in the 1+1 Dirac equation by manipulating two trapped ions. The Dirac spinor is represented by the internal states of one ion, while its position and momentum are described by those of a collective motional mode. The second ion is used to build the desired potentials with high spatial resolution.Comment: 4 pages, 3 figures, minor change

    Homalg: A meta-package for homological algebra

    Full text link
    The central notion of this work is that of a functor between categories of finitely presented modules over so-called computable rings, i.e. rings R where one can algorithmically solve inhomogeneous linear equations with coefficients in R. The paper describes a way allowing one to realize such functors, e.g. Hom, tensor product, Ext, Tor, as a mathematical object in a computer algebra system. Once this is achieved, one can compose and derive functors and even iterate this process without the need of any specific knowledge of these functors. These ideas are realized in the ring independent package homalg. It is designed to extend any computer algebra software implementing the arithmetics of a computable ring R, as soon as the latter contains algorithms to solve inhomogeneous linear equations with coefficients in R. Beside explaining how this suffices, the paper describes the nature of the extensions provided by homalg.Comment: clarified some points, added references and more interesting example

    The lambda-dimension of commutative arithmetic rings

    Full text link
    It is shown that every commutative arithmetic ring RR has lambdalambda-dimension leq3 leq 3. An example of a commutative Kaplansky ring with lambda lambda-dimension 3 is given. If RR satisfies an additional condition then lambda lambda-dim(RR

    Weighted Bergman kernels and virtual Bergman kernels

    Full text link
    We introduce the notion of "virtual Bergman kernel" and apply it to the computation of the Bergman kernel of "domains inflated by Hermitian balls", in particular when the base domain is a bounded symmetric domain.Comment: 12 pages. One-hour lecture for graduate students, SCV 2004, August 2004, Beijing, P.R. China. V2: typo correcte

    Quantum Simulation of Quantum Field Theories in Trapped Ions

    Get PDF
    We propose the quantum simulation of a fermion and an antifermion field modes interacting via a bosonic field mode, and present a possible implementation with two trapped ions. This quantum platform allows for the scalable add-up of bosonic and fermionic modes, and represents an avenue towards quantum simulations of quantum field theories in perturbative and nonperturbative regimes.Comment: To be published in Physical Review Letter

    Resonant ion-pair formation in electron recombination with HF^+

    Full text link
    The cross section for resonant ion-pair formation in the collision of low-energy electrons with HF^+ is calculated by the solution of the time-dependent Schrodinger equation with multiple coupled states using a wave packet method. A diabatization procedure is proposed to obtain the electronic couplings between quasidiabatic potentials of ^1Sigma^+ symmetry for HF. By including these couplings between the neutral states, the cross section for ion-pair formation increases with about two orders of magnitude compared with the cross section for direct dissociation. Qualitative agreement with the measured cross section is obtained. The oscillations in the calculated cross section are analyzed. The cross section for ion-pair formation in electron recombination with DF^+ is calculated to determine the effect of isotopic substitution.Comment: 12 pages, 12 figure

    Quantum simulation of the Klein paradox with trapped ions

    Get PDF
    We report on quantum simulations of relativistic scattering dynamics using trapped ions. The simulated state of a scattering particle is encoded in both the electronic and vibrational state of an ion, representing the discrete and continuous components of relativistic wave functions. Multiple laser fields and an auxiliary ion simulate the dynamics generated by the Dirac equation in the presence of a scattering potential. Measurement and reconstruction of the particle wave packet enables a frame-by-frame visualization of the scattering processes. By precisely engineering a range of external potentials we are able to simulate text book relativistic scattering experiments and study Klein tunneling in an analogue quantum simulator. We describe extensions to solve problems that are beyond current classical computing capabilities.Comment: 3 figures, accepted for publication in PR
    corecore