4 research outputs found

    Predominantly myalgic phenotype caused by the c.3466G > A p.A1156T mutation in SCN4A gene

    Get PDF
    Objective: To characterize the clinical phenotype in patients with p.A1156T sodium channel mutation. Methods: Twenty-nine Finnish patients identified with the c.3466G>A p.A1156T mutation in the SCN4A gene were extensively examined. In a subsequent study, 63 patients with similar myalgic phenotype and with negative results in myotonic dystrophy type 2 genetic screening (DM2-neg group) and 93 patients diagnosed with fibromyalgia were screened for the mutation. Functional consequences of the p.A1156T mutation were studied in HEK293 cells with whole-cell patch clamp. Results: The main clinical manifestation in p.A1156T patients was not myotonia or periodic paralysis but exercise-and cold-induced muscle cramps, muscle stiffness, and myalgia. EMG myotonic discharges were detected in most but not all. Electrophysiologic compound muscle action potentials exercise test showed variable results. The p.A1156T mutation was identified in one patient in the DM2-neg group but not in the fibromyalgia group, making a total of 30 patients so far identified. Functional studies of the p.A1156T mutation showed mild attenuation of channel fast inactivation. Conclusions: The unspecific symptoms of myalgia stiffness and exercise intolerance without clinical myotonia or periodic paralysis in p.A1156T patients make the diagnosis challenging. The symptoms of milder SCN4A mutations may be confused with other similar myalgic syndromes, including fibromyalgia and myotonic dystrophy type 2.Peer reviewe

    Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes and hyperinsulinism

    Get PDF
    K(ATP) channels regulate insulin secretion from pancreatic beta-cells. Loss- and gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of this channel cause hyperinsulinism of infancy and neonatal diabetes, respectively. We report two novel mutations in the gating loop of Kir6.2 which cause neonatal diabetes with developmental delay (T293N) and hyperinsulinism (T294M). These mutations increase (T293N) or decrease (T294M) whole-cell K(ATP) currents, accounting for the different clinical phenotypes. The T293N mutation increases the intrinsic channel open probability (Po((0))), thereby indirectly decreasing channel inhibition by ATP and increasing whole-cell currents. T294M channels exhibit a dramatically reduced Po((0)) in the homozygous but not in the pseudo-heterozygous state. Unlike wild-type channels, hetT294M channels were activated by MgADP in the absence but not in the presence of MgATP; however, they are activated by MgGDP in both the absence and presence of MgGTP. These mutations demonstrate the importance of the gating loop of Kir channels in regulating Po((0)) and further suggest that Mg-nucleotide interaction with SUR1 may reduce ATP inhibition at Kir6.2.We thank the Wellcome Trust (076436/Z/05/Z and 081188/A/06/Z), the Royal Society and the European Union (EuroDia, SHM‐CT‐2006‐518513 and EDICT, 201924) for support. FMA is a Royal Society Research Professor. Brittany Zadek was supported by an OXION studentship and Sarah Flanagan by a Sir Graham Wilkins Research Fellowship

    Prevalence of genetically confirmed skeletal muscle channelopathies in the era of next generation sequencing

    No full text
    We provide an up-to-date and accurate minimum point prevalence of genetically defined skeletal muscle channelopathies which is important for understanding the population impact, planning for treatment needs and future clinical trials. Skeletal muscle channelopathies include myotonia congenita (MC), sodium channel myotonia (SCM), paramyotonia congenita (PMC), hyperkalemic periodic paralysis (hyperPP), hypokalemic periodic paralysis (hypoPP) and Andersen- Tawil Syndrome (ATS). Patients referred to the UK national referral centre for skeletal muscle channelopathies and living in UK were included to calculate the minimum point prevalence using the latest data from the Office for National Statistics population estimate. We calculated a minimum point prevalence of all skeletal muscle channelopathies of 1.99/100 000 (95% CI 1.981-1.999). The minimum point prevalence of MC due to CLCN1 variants is 1.13/100 000 (95% CI 1.123-1.137), SCN4A variants which encode for PMC and SCM is 0.35/100 000 (95% CI 0.346 - 0.354) and for periodic paralysis (HyperPP and HypoPP) 0.41/100 000 (95% CI 0.406-0.414). The minimum point prevalence for ATS is 0.1/100 000 (95% CI 0.098-0.102). There has been an overall increase in point prevalence in skeletal muscle channelopathies compared to previous reports, with the biggest increase found to be in MC. This can be attributed to next generation sequencing and advances in clinical, electrophysiological and genetic characterisation of skeletal muscle channelopathies

    Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes and hyperinsulinism

    Get PDF
    K(ATP) channels regulate insulin secretion from pancreatic beta-cells. Loss- and gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of this channel cause hyperinsulinism of infancy and neonatal diabetes, respectively. We report two novel mutations in the gating loop of Kir6.2 which cause neonatal diabetes with developmental delay (T293N) and hyperinsulinism (T294M). These mutations increase (T293N) or decrease (T294M) whole-cell K(ATP) currents, accounting for the different clinical phenotypes. The T293N mutation increases the intrinsic channel open probability (Po((0))), thereby indirectly decreasing channel inhibition by ATP and increasing whole-cell currents. T294M channels exhibit a dramatically reduced Po((0)) in the homozygous but not in the pseudo-heterozygous state. Unlike wild-type channels, hetT294M channels were activated by MgADP in the absence but not in the presence of MgATP; however, they are activated by MgGDP in both the absence and presence of MgGTP. These mutations demonstrate the importance of the gating loop of Kir channels in regulating Po((0)) and further suggest that Mg-nucleotide interaction with SUR1 may reduce ATP inhibition at Kir6.2
    corecore