514 research outputs found

    Impact of Novel Sorghum Bran Diets on DSS-Induced Colitis.

    Full text link
    We have demonstrated that polyphenol-rich sorghum bran diets alter fecal microbiota; however, little is known regarding their effect on colon inflammation. Our aim was to characterize the effect of sorghum bran diets on intestinal homeostasis during dextran sodium sulfate (DSS)-induced colitis. Male Sprague-Dawley rats (N = 20/diet) were provided diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins) or Hi Tannin Black (both) sorghum bran. Colitis was induced (N = 10/diet) with three separate 48-h exposures to 3% DSS, and feces were collected. On Day 82, animals were euthanized and the colon resected. Only discrete mucosal lesions, with no diarrhea or bloody stools, were observed in DSS rats. Only bran diets upregulated proliferation and Tff3, Tgfβ and short chain fatty acids (SCFA) transporter expression after a DSS challenge. DSS did not significantly affect fecal SCFA concentrations. Bran diets alone upregulated repair mechanisms and SCFA transporter expression, which suggests these polyphenol-rich sorghum brans may suppress some consequences of colitis

    Age-period-cohort analysis of trends in amyotrophic lateral sclerosis incidence

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease with an unknown cause. Studies have reported that the incidence rate of ALS might be changing. As ALS is an age related disease, crude incidence could increase as population structure changes and overall life expectancy improves. Age-period-cohort (APC) models are frequently used to investigate trends in demographic rates such as incidence. Age-specific incidence rate for ALS from 1996 to 2014 were taken from a population-based ALS register in Ireland. To circumvent the well-known identifiability issue in APC models, we apply the method of Partial Least Squares Regression to separate the effects of Age, Period and Cohort on ALS incidence over time. This APC analysis shows no cohort effect and the initial signs of a period effect; increasing incidence of ALS in the most recently diagnosed group. As further years of data accrue to the Irish register it will become clear if this effect emerges as a strong trend in the incidence of ALS in Ireland and replication of these analyses in other populations will show if our findings on temporal patterns in ALS incidence are shared elsewhere

    Childhood solid tumours in relation to infections in the community in Cumbria during pregnancy and around thetime of birth

    Get PDF
    In a retrospective cohort study of all 99 976 live births in Cumbria, 1975–1992, we investigated whether higher levels of community infections during the mother's pregnancy and in early life were risk factors for solid tumours (brain/spinal and other tumours), diagnosed 1975–1993 under age 15 years. Logistic regression was used to relate risk to incidence of community infections in three prenatal and two postnatal quarters. There was an increased risk of brain/spinal tumours among children exposed around or soon after birth to higher levels of community infections, in particular measles (OR for trend=2.1, 95%CI : 1.3–3.6, P=0.008) and influenza (OR for exposure=3.3, 95%CI : 1.5–7.4, P=0.005). There was some evidence of an association between exposure to infections around and soon after birth and risk of other tumours, but this may have been a chance finding. The findings are consistent with other recent epidemiological studies suggesting brain tumours may be associated with perinatal exposure to infections

    Equine Protozoal Myeloencephalitis: An Updated Consensus Statement with a Focus on Parasite Biology, Diagnosis, Treatment, and Prevention

    Get PDF
    Equine protozoal myeloencephalitis (EPM) remains an important neurologic disease of horses. There are no pathognomonic clinical signs for the disease. Affected horses can have focal or multifocal central nervous system (CNS) disease. EPM can be difficult to diagnose antemortem. It is caused by either of 2 parasites, Sarcocystis neurona and Neospora hughesi, with much less known about N. hughesi. Although risk factors such as transport stress and breed and age correlations have been identified, biologic factors such as genetic predispositions of individual animals, and parasite-specific factors such as strain differences in virulence, remain largely undetermined. This consensus statement update presents current published knowledge of the parasite biology, host immune response, disease pathogenesis, epidemiology, and risk factors. Importantly, the statement provides recommendations for EPM diagnosis, treatment, and prevention

    Development and characterisation of a large diameter decellularised vascular allograft

    Get PDF
    The aims of this study were to develop a biological large diameter vascular graft by decellularisation of native human aorta to remove the immunogenic cells whilst retaining the essential biomechanical, and biochemical properties for the ultimate benefit of patients with infected synthetic grafts. Donor aortas (n = 6) were subjected to an adaptation of a propriety decellularisation process to remove the cells and acellularity assessed by histological analysis and extraction and quantification of total DNA. The biocompatibility of the acellular aortas was determined using standard contact cytotoxicity tests. Collagen and denatured collagen content of aortas was determined and immunohistochemistry was used to determine the presence of specific extracellular matrix proteins. Donor aortas (n = 6) were divided into two, with one half subject to decellularisation and the other half retained as native tissue. The native and decellularised aorta sections were then subject to uniaxial tensile testing to failure [axial and circumferential directions] and suture retention testing. The data was compared using a paired t-test. Histological evaluation showed an absence of cells in the treated aortas and retention of histoarchitecture including elastin content. The decellularised aortas had less than 15 ng mg¯¹ total DNA per dry weight (mean 94% reduction) and were biocompatible as determined by in vitro contact cytotoxicity tests. There were no gross changes in the histoarchitecture [elastin and collagen matrix] of the acellular aortas compared to native controls. The decellularisation process also reduced calcium deposits within the tissue. The uniaxial tensile and suture retention testing revealed no significant differences in the material properties (p > 0.05) of decellularised aorta. The decellularisation procedure resulted in minimal changes to the biological and biomechanical properties of the donor aortas. Acellular donor aorta has excellent potential for use as a large diameter vascular graft

    Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes

    Get PDF
    Detection of somatic mutations in human leukocyte antigen (HLA) genes using whole-exome sequencing (WES) is hampered by the high polymorphism of the HLA loci, which prevents alignment of sequencing reads to the human reference genome. We describe a computational pipeline that enables accurate inference of germline alleles of class I HLA-A, B and C genes and subsequent detection of mutations in these genes using the inferred alleles as a reference. Analysis of WES data from 7,930 pairs of tumor and healthy tissue from the same patient revealed 298 nonsilent HLA mutations in tumors from 266 patients. These 298 mutations are enriched for likely functional mutations, including putative loss-of-function events. Recurrence of mutations suggested that these \u27hotspot\u27 sites were positively selected. Cancers with recurrent somatic HLA mutations were associated with upregulation of signatures of cytolytic activity characteristic of tumor infiltration by effector lymphocytes, supporting immune evasion by altered HLA function as a contributory mechanism in cancer

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Sequence analysis of the Epstein-Barr virus (EBV) BRLF1 gene in nasopharyngeal and gastric carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epstein-Barr virus (EBV) has a biphasic infection cycle consisting of a latent and a lytic replicative phase. The product of immediate-early gene BRLF1, Rta, is able to disrupt the latency phase in epithelial cells and certain B-cell lines. The protein Rta is a frequent target of the EBV-induced cytotoxic T cell response. In spite of our good understanding of this protein, little is known for the gene polymorphism of BRLF1.</p> <p>Results</p> <p>BRLF1 gene was successfully amplified in 34 EBV-associated gastric carcinomas (EBVaGCs), 57 nasopharyngeal carcinomas (NPCs) and 28 throat washings (TWs) samples from healthy donors followed by PCR-direct sequencing. Fourteen loci were found to be affected by amino acid changes, 17 loci by silent nucleotide changes. According to the phylogenetic tree, 5 distinct subtypes of BRLF1 were identified, and 2 subtypes BR1-A and BR1-C were detected in 42.9% (51/119), 42.0% (50/119) of samples, respectively. The distribution of these 2 subtypes among 3 types of specimens was significantly different. The subtype BR1-A preferentially existed in healthy donors, while BR1-C was seen more in biopsies of NPC. A silent mutation A/G was detected in all the isolates. Among 3 functional domains, the dimerization domain of Rta showed a stably conserved sequence, while DNA binding and transactivation domains were detected to have multiple mutations. Three of 16 CTL epitopes, NAA, QKE and ERP, were affected by amino acid changes. Epitope ERP was relatively conserved; epitopes NAA and QKE harbored more mutations.</p> <p>Conclusions</p> <p>This first detailed investigation of sequence variations in BRLF1 gene has identified 5 distinct subtypes. Two subtypes BR1-A and BR1-C are the dominant genotypes of BRLF1. The subtype BR1-C is more frequent in NPCs, while BR1-A preferentially presents in healthy donors. BR1-C may be associated with the tumorigenesis of NPC.</p
    corecore