46 research outputs found

    A Historiometric Examination of Machiavellianism and a New Taxonomy of Leadership

    Get PDF
    Although researchers have extensively examined the relationship between charismatic leadership and Machiavellianism (Deluga, 2001; Gardner & Avolio, 1995; House & Howell, 1992), there has been a lack of investigation of Machiavellianism in relation to alternative forms of outstanding leadership. Thus, the purpose of this investigation was to examine the relationship between Machiavellianism and a new taxonomy of outstanding leadership comprised of charismatic, ideological, and pragmatic leaders. Using an historiometric approach, raters assessed Machiavellianism via the communications of 120 outstanding leaders in organizations across the domains of business, political, military, and religious institutions. Academic biographies were used to assess twelve general performance measures as well as twelve general controls and five communication specific controls. The results indicated that differing levels of Machiavellianism is evidenced across the differing leader types as well as differing leader orientation. Additionally, Machiavellianism appears negatively related to performance, though less so when type and orientation are taken into account.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The foster care system simulation: Evaluation of a training innovation

    No full text
    Although foster care is often spoken of as a system with many interactive facets, foster care personnel often carry out their specific roles with little understanding or consideration of the ultimate impact of that system. A simulation of public foster care service delivery designed to sensitize participants to these interactions is described. Evaluation of the simulation's accuracy in portrayal of actual service delivery and a study of the kinds of learning demonstrated by participants at three points (pretest, posttest, and follow-up) are reported. Participants found the simulation an attractive training method, indicated a greater appreciation of system-wide foster care problems, and reported changes in foster care thinking and work, but other indicators of learning were inconsistent

    Crop Rotation and Soil Amendment Alters Sorghum Grain Quality

    Get PDF
    Soybean [Glycine max (L.) Merr.] rotation enhances grain sorghum [Sorghum bicolor (L.) Moench] yield, but infl uence on grain quality has not been measured. The objective was to determine the effect of cropping sequence (CS) and soil amendment (SA) on grain yield and quality. Sorghum grain yield and quality, soil NO3–N and water were measured in a rotation study in 2003 and 2004 on a Sharpsburg silty clay loam (fine, smectitic, mesic Typic Argiudoll). Cropping sequences were continuous sorghum, and sorghum rotated with non-nodulating and nodulating soybean. Soil amendments consisted of no amendment, manure (17–26 Mg dry matter ha−1 yr−1), and N (84 kg ha−1 yr−1). CS × SA interaction effects were found for most parameters. Rotation with non-nodulating soybean without SA increased yield by 2.6 to 2.8 Mg ha−1 over continuous sorghum without SA. Rotation without SA with nodulating soybean further increased yield by 1.7 to 1.8 Mg ha−1 over rotation with non-nodulating soybean. Grain N increased by 0.5 to 1.0, 2.5 to 5.0, and 3.3 to 4.9 g kg−1 for N application to continuous sorghum and sorghum rotated with non-nodulating and nodulating soybean, respectively. Tangential abrasive dehulling device (TADD) removal indicated that continuous sorghum without SA produced the softest grain with 43 to 44% TADD removal, and sorghum rotated with nodulating soybean with manure produced the hardest grain with 22 to 27% TADD removal. As food end-use opportunities for sorghum grain evolve, use of crop rotation and SA application will be important to produce grain with desirable quality attributes. Includes corrected Table 4

    Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria

    No full text
    Fusarium (Hypocreales, Nectriaceae) is one of the most economically important and systematically challenging groups of mycotoxigenic phytopathogens and emergent human pathogens. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial DNA-directed RNA polymerase II largest (RPB1) and second largest subunit (RPB2) nucleotide sequences of 93 fusaria to infer the first comprehensive and well-supported phylogenetic hypothesis of evolutionary relationships within the genus and 20 of its near relatives. Our analyses revealed that Cylindrocarpon formed a basal monophyletic sister to a ‘terminal Fusarium clade’ (TFC) comprising 20 strongly supported species complexes and nine monotypic lineages, which we provisionally recognize as Fusarium (hypothesis F1). The basal-most divergences within the TFC were only significantly supported by Bayesian posterior probabilities (B-PP 0.99–1). An internode of the remaining TFC, however, was strongly supported by MP and ML bootstrapping and B-PP (hypothesis F2). Analysis of seven Fusarium genome sequences and Southern analysis of fusaria elucidated the distribution of genes required for synthesis of 26 families of secondary metabolites within the phylogenetic framework. Diversification time estimates date the origin of the TFC to the middle Cretaceous 91.3 million years ago. We also dated the origin of several agriculturally important secondary metabolites as well as the lineage responsible for Fusarium head blight of cereals. Dating of several plant-associated species complexes suggests their evolution may have been driven by angiosperm diversification during the Miocene. Our results support two competing hypotheses for the circumscription of Fusarium and provide a framework for future comparative phylogenetic and genomic analyses of this agronomically and medically important genus
    corecore