25 research outputs found

    Jasmonic acid methyl ester induces xylogenesis and modulates auxin-induced xylary cell identity with NO Involvement

    Get PDF
    In Arabidopsis basal hypocotyls of dark-grown seedlings, xylary cells may form from the pericycle as an alternative to adventitious roots. Several hormones may induce xylogenesis, as Jasmonic acid (JA), as well as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) auxins, which also affect xylary identity. Studies with the ethylene (ET)-perception mutant ein3eil1 and the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC), also demonstrate ET involvement in IBA-induced ectopic metaxylem. Moreover, nitric oxide (NO), produced after IBA/IAA-treatments, may affect JA signalling and interact positively/negatively with ET. To date, NO-involvement in ET/JA-mediated xylogenesis has never been investigated. To study this, and unravel JA-effects on xylary identity, xylogenesis was investigated in hypocotyls of seedlings treated with JA methyl-ester (JAMe) with/without ACC, IBA, IAA. Wild-type (wt) and ein3eil1 responses to hormonal treatments were compared, and the NO signal was quantified and its role evaluated by using NO-donors/scavengers. Ectopic-protoxylem increased in the wt only after treatment with JAMe(10 μM), whereas in ein3eil1 with any JAMe concentration. NO was detected in cells leading to either xylogenesis or adventitious rooting, and increased after treatment with JAMe(10 μM) combined or not with IBA(10 μM). Xylary identity changed when JAMe was applied with each auxin. Altogether, the results show that xylogenesis is induced by JA and NO positively regulates this process. In addition, NO also negatively interacts with ET-signalling and modulates auxin-induced xylary identity

    Nitric oxide alleviates cadmium- but not arsenic-induced damages in rice roots

    Get PDF
    Nitric oxide (NO) has signalling roles in plant stress responses. Cadmium (Cd) and arsenic (As) soil pollutants alter plant development, mainly the root-system, by increasing NO-content, triggering reactive oxygen species (ROS), and forming peroxynitrite by NO-reaction with the superoxide anion. Interactions of NO with ROS and peroxynitrite seem important for plant tolerance to heavy metal(oid)s, but the mechanisms underlying this process remain unclear. Our goal was to investigate NO-involvement in rice (Oryza sativa L.) root-system after exposure to Cd or As, to highlight possible differences in NO-behaviour between the two pollutants. To the aim, morpho-histological, chemical and epifluorescence analyses were carried out on roots of different origin in the root-system, under exposure to Cd or As, combined or not with sodium nitroprusside (SNP), a NO-donor compound. Results show that increased intracellular NO levels alleviate the root-system alterations induced by Cd, i.e., inhibition of adventitious root elongation and lateral root formation, increment in lignin deposition in the sclerenchyma/endodermis cell-walls, but, even if reducing As-induced endodermis lignification, do not recover the majority of the As-damages, i.e., enhancement of AR-elongation, reduction of LR-formation, anomalous tissue-proliferation. However, NO decreases both Cd and As uptake, without affecting the pollutants translocation-capability from roots to shoots. Moreover, NO reduces the Cd-induced, but not the As-induced, ROS levels by triggering peroxynitrite production. Altogether, results highlight a different behaviour of NO in modulating rice root-system response to the toxicity of the heavy metal Cd and the metalloid As, which depends by the NO-interaction with the specific pollutant

    Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin

    Get PDF
    Cadmium (Cd) and arsenic (As), non essential, but toxic, elements for animals and plants are frequently present in paddy fields. Oryza sativa L., a staple food for at least the half of world population, easily absorbs As and Cd by the root, and in this organ the pollutants evoke consistent damages, reducing/modifying the root system. Auxins are key hormones in regulating all developmental processes, including root organogenesis. Moreover, plants respond to environmental stresses, such as those caused by Cd and As, by changing levels and distribution of endogenous phytohormones. Even though the effects of Cd and As on the roots have been investigated in some species, it remains necessary to deepen the knowledge about the cross-talk between these toxic elements and auxin during root formation and development, in particular in agronomically important plants, such as rice. Hence, the research goal was to investigate the interactions between Cd and As, alone or combined, and auxin during the development of rice roots. To reach the aim, morphological, histological and histochemical analyses were carried out on seedlings, exposed or not to Cd and/or As, belonging to the wild type and transgenic lines useful for monitoring indole-3-acetic acid (IAA) localization, i.e., OsDR5:GUS, and IAA cellular influx and efflux, i.e., OsAUX1:GUS and OsPIN5b:GUS. Moreover, the transcript levels of the YUCCA2 and ASA2, IAA biosynthetic genes were also monitored in Cd and/or As exposed wild type seedlings. The results highlight that As and Cd affect cyto-histology and morphology of the roots. In particular, they alter the lateral root primordia organization and development with negative consequences on root system architecture. This is due to a disturbance of IAA biosynthesis and transport, as indicated by the altered expression of both ASA2 and YUCCA2 biosynthetic genes, and AUX1 and PIN5b transporter genes

    4D Printing of Humidity-Driven Seed Inspired Soft Robots

    Get PDF
    Geraniaceae seeds represent a role model in soft robotics thanks to their ability to move autonomously across and into the soil driven by humidity changes. The secret behind their mobility and adaptivity is embodied in the hierarchical structures and anatomical features of the biological hygroscopic tissues, geometrically designed to be selectively responsive to environmental humidity. Following a bioinspired approach, the internal structure and biomechanics of Pelargonium appendiculatum (L.f.) Willd seeds are investigated to develop a model for the design of a soft robot. The authors exploit the re-shaping ability of 4D printed materials to fabricate a seed-like soft robot, according to the natural specifications and model, and using biodegradable and hygroscopic polymers. The robot mimics the movement and performances of the natural seed, reaching a torque value of ≈30 µN m, an extensional force of ≈2.5 mN and it is capable to lift ≈100 times its own weight. Driven by environmental humidity changes, the artificial seed is able to explore a sample soil, adapting its morphology to interact with soil roughness and cracks

    A Bioinspired Plasmonic Nanocomposite Actuator Sunlight-Driven by a Photothermal-Hygroscopic Effect for Sustainable Soft Robotics

    Get PDF
    Combined photothermal-hygroscopic effects enable novel materials actuation strategies based on renewable and sustainable energy sources such as sunlight. Plasmonic nanoparticles have gained considerable interest as photothermal agents, however, the employment in sunlight-driven photothermal-hygroscopic actuators is still bounded, mainly due to the limited absorbance once integrated into nanocomposite actuators and the restricted plasmonic peaks amplitude (compared to the solar spectrum). Herein, the design and fabrication of an AgNPs-based plasmonic photothermal-hygroscopic actuator integrated with printed cellulose tracks are reported (bioinspired to Geraniaceae seeds structures). The nanocomposite is actuated by sunlight power density (i.e., 1 Sun = 100 mW cm−2). The plasmonic AgNPs are in situ synthesized on the PDMS surface through a one-step and efficient fluoride-assisted synthesis (surface coverage ≈40%). The nanocomposite has a broadband absorbance in the VIS range (>1) and a Photothermal Conversion Efficiency ≈40%. The actuator is designed exploiting a mechanical model that predicted the curvature and forces, featuring a ≈6.8 ± 0.3 s response time, associated with a ≈43% change in curvature and a 0.76 ± 0.02 mN force under 1 Sun irradiation. The plasmonic nanocomposite actuator can be used for multiple tasks, as hinted through illustrative soft robotics demonstrators, thus fostering a bioinspired approach to developing embodied energy systems driven by sunlight

    Cadmium and arsenic affect quiescent centre formation and maintenance in Arabidopsis thaliana post-embryonic roots disrupting auxin biosynthesis and transport

    Get PDF
    The research was focussed on the effects of cadmium (Cd) and arsenic (As), alone or combined, on Arabidopsis post-embryonic roots, with attention to quiescent centre formation and development in relation to auxin homeostasis. To the aim, morphological and histochemical analyses were carried out on seedlings, exposed or not to Cd and/or As, of wild type, and transgenic lines useful for monitoring quiescent centre identity, auxin localization and cellular influx and efflux. Moreover, auxin levels and expression of the YUC6 auxin biosynthetic gene were monitored in Cd and/or As exposed wild type seedlings. Results showed that Cd and Cd plus As increased the lateral and adventitious root density, whereas As alone reduced it. In the lateral and adventitious root apices Cd and/or As negatively affected quiescent centre identity and auxin localization, changed auxin levels, expression of YUC6, and of PIN1 and LAX3, auxin efflux and influx carriers, respectively. The alteration in auxin homeostasis was different for the two pollutants, explaining their contrasting response on the post-embryonic roots

    Auxin-jasmonate crosstalk in Oryza sativa L. root system formation after cadmium and/or arsenic exposure

    Get PDF
    Soil pollutants may affect root growth through interactions among phytohormones like auxin and jasmonates. Rice is frequently grown in paddy fields contaminated by cadmium and arsenic, but the effects of these pollutants on jasmonates/auxin crosstalk during adventitious and lateral roots formation are widely unknown. Therefore, seedlings of Oryza sativa cv. Nihonmasari and of the jasmonate-biosynthetic mutant coleoptile photomorphogenesis2 were exposed to cadmium and/or arsenic, and/or jasmonic acid methyl ester, and then analysed through morphological, histochemical, biochemical and molecular approaches. In both genotypes, arsenic and cadmium accumulated in roots more than shoots. In the roots, arsenic levels were more than twice higher than cadmium levels, either when arsenic was applied alone, or combined with cadmium. Pollutants reduced lateral root density in the wild -type in every treatment condition, but jasmonic acid methyl ester increased it when combined with each pollutant. Interestingly, exposure to cadmium and/or arsenic did not change lateral root density in the mutant. The transcript levels of OsASA2 and OsYUCCA2, auxin biosynthetic genes, increased in the wild-type and mutant roots when pollutants and jasmonic acid methyl ester were applied alone. Auxin (indole-3-acetic acid) levels transiently increased in the roots with cadmium and/or arsenic in the wild-type more than in the mutant. Arsenic and cadmium, when applied alone, induced fluctuations in bioactive jasmonate contents in wild-type roots, but not in the mutant. Auxin distribution was evaluated in roots of OsDR5::GUS seedlings exposed or not to jasmonic acid methyl ester added or not with cadmium and/or arsenic. The DR5::GUS signal in lateral roots was reduced by arsenic, cadmium, and jasmonic acid methyl ester. Lipid peroxidation, evaluated as malondialdehyde levels, was higher in the mutant than in the wild-type, and increased particularly in As presence, in both genotypes. Altogether, the results show that an auxin/jasmonate interaction affects rice root system development in the presence of cadmium and/or arsenic, even if exogenous jasmonic acid methyl ester only slightly mitigates pollutants toxicity

    Role of nitric oxide in cadmium and arsenic toxicity in Oryza sativa L. root system

    No full text
    Cadmium (Cd) and Arsenic (As) pollution has become a serious factor limiting the growth and productivity of Oryza sativa L. and a risk for human health. Roots are the first organs affected by these pollutants, showing growth inhibition and altered cellular differentiation (Fattorini et al., 2017 doi: 10.1016/j.envexpbot.2017.10.005). Cd and As alter root architecture negatively interacting with hormone biosynthesis and transport, e.g. with auxin (Ronzan et al., 2018, doi: 10.1016/j.envexpbot.2018.04.008). Auxin homeostasis during root formation is regulated by a coordinated action between synthesis and polar transport, both essential for proper initiation and development. Nitric oxide (NO) is a signal molecule involved in a plethora of plant physiological and developmental processes, being a key component in hormone-regulated processes, e.g. those auxin-regulated (Corpas and Barroso 2015 doi: 10.3390/plants4020240). A function for NO in both plant abiotic and biotic stresses tolerance is also emerging. The aim of this work was to study NO role during root system formation in rice seedlings exposed to Cd or As, and to investigate NO possible interaction with auxin. To the aim, element and morphological analyses were carried out in rice roots exposed or not to Cd/As and to the NO-donor Sodium Nitroprussiate (SNP). The transcription levels of OsYUCCA2 gene, involved in auxin biosynthesis, and OsPIN5 and OsAUX1 genes, involved in auxin transport, were analysed after Cd/As/SNP treatments. The auxin distribution was also monitored by histochemical analyses in roots of OsDR5::GUS seedlings exposed to the toxic elements and/or SNP. Our results show that the exogenous NO significantly reduced Cd and As accumulation in the roots. NO alleviated the Cd toxic effects during root formation, but not those due to As. Cd and As altered OsYUCCA2, OsAUX1 and OsPIN5 expression. The further addition of exogenous NO modulated these expression changes. A positive role of NO in restoring auxin distribution in rice root system, after Cd/As treatments, was shown by the use of OsDR5::GUS system. All together, the results highlight that NO alleviates Cd and As toxicity in rice root formation interacting with auxin biosynthesis and transport
    corecore