25 research outputs found
A two-layer approach to the coupled coherent states method
In this paper a two-layer scheme is outlined for the coupled coherent states (CCS) method, dubbed two-layer CCS (2L-CCS). The theoretical framework is motivated by that of the multiconfigurational Ehrenfest (MCE) method, where different dynamical descriptions are used for different subsystems of a quantum mechanical system. This leads to a flexible representation of the wavefunction, making the method particularly suited to the study of composite systems. It was tested on a 20-dimensional asymmetric system-bath tunnelling problem, with results compared to a benchmark calculation, as well as existing CCS, MP/SOFT and CI expansion methods. The two-layer method was found to lead to improved short and long term propagation over standard CCS, alongside improved numerical efficiency and parallel scalability. These promising results provide impetus for future development of the method for on-the-fly direct dynamics calculations
Coupled-coherent-states approach for high-order harmonic generation
In this paper, we report a version of the coupled-coherent-states method which is able to accurately compute the high-order harmonic generation (HHG) spectrum of an electron in a laser field in one dimension by the use of trajectory-guided grids of Gaussian wave packets. It is shown that by periodic reprojection of the wave function and dynamically altering the basis set size, the method can account for a wave function which spreads out to cover a large area in phase space while still keeping computational expense low and ensuring the preservation of coherence of the wave function. The HHG spectra obtained show good agreement with those from a time-dependent Schrödinger equation solver. We show also that the part of the wave function which is responsible for HHG moves along a periodic orbit which is far from that of classical motion. Although this paper is a proof of principle and therefore focused on a simple one-dimensional system, future generalizations for the multielectron case are discussed
Amorphisation and Devitrification of Al -Transition Metal - Rare Earth Alloys
Amorphisation studies by rapid solidification of Al-based alloys containing a transition metal (TM) and a rare earth element (RE) are reported. Results on primary formation of Al nanocrystals are given and discussed in relation to possible nucleation mechanisms considering the effect of various RE elements (RE = La, Cc, Nd and Sm) in Al87Ni7RE6 alloys. Ti or Zr, immiscible with RE's, are added to the ternary alloys with the aim of revealing possible phase separation in the melt. Calculations of ternary Al-Ni-Ce metastable phase equilibria are helpful in understanding the transformation sequence. Composition profiles ahead of nanocrystals are computed using the DICTRA software which correctly predicts the occurrence of composition gradients.
The surface fracture of mechanically tested samples are observed in TEM to check whether crystallisation is induced by deformation