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A two-layer approach to the coupled coherent states method
James A. Green,1, a) Adriano Grigolo,2, b) Miklos Ronto,1, c) and Dmitrii V. Shalashilin1, d)

1)School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
2)Instituto de F́ısica “Gleb Wataghin”, Universidade Estadual de Campinas, 13083-859, Campinas, SP,
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(Dated: 18 December 2015)

In this paper a two-layer scheme is outlined for the coupled coherent states (CCS) method, dubbed two-layer
CCS (2L-CCS). The theoretical framework is motivated by that of the multiconfigurational Ehrenfest (MCE)
method, where different dynamical descriptions are used for different subsystems of a quantum mechanical
system. This leads to a flexible representation of the wavefunction, making the method particularly suited
to the study of composite systems. It was tested on a 20-dimensional asymmetric system-bath tunnelling
problem, with results compared to a benchmark calculation, as well as existing CCS, MP/SOFT and CI
expansion methods. The two-layer method was found to lead to improved short and long term propagation
over standard CCS, alongside improved numerical efficiency and parallel scalability. These promising results
provide impetus for future development of the method for on-the-fly direct dynamics calculations.

PACS numbers: Valid PACS appear here
Keywords: quantum dynamics, trajectory-based methods, coherent states, tunnelling, system-bath, wave-
function

I. INTRODUCTION

Multilayer variants of existing numerical methods in
multidimensional quantum mechanics offer an increase
in flexibility and give better scalability for the de-
scription of complex quantum systems. Motivated by
the extension of multiconfigurational time-dependent
Hartree (MCTDH)1,2 to its multilayer formalism (ML-
MCTDH)3–5, Gaussian based methods have already been
extended in this direction, and a two-layer approach for
the Gaussian-based multiconfigurational time-dependent
Hartree (G-MCTDH) has been proposed in Ref. 6.
Numerous Gaussian based techniques exist for both semi-
classical and quantum propagation. Following the sem-
inal work by Heller7 many of those methods represent
the wavefunction as a superposition of trajectory guided
Gaussian coherent states

|Ψ(t)〉 =

N
∑

n=1

An(t)|zn(t)〉 . (1)

In the z-notation representation of coherent states, anM -
dimensional coherent state (CS) is a product of M one-

dimensional Gaussian wavepackets: |z〉 =
∏M
i=1 |z(i)〉.

The position representation of these states is

〈x|z(i)〉 = (γ/π)
1
4 e−

γ
2 (x−q(i))2+ i

~
p(i)(x−q(i))+ i

2~
p(i)q(i)

(2)

where γ describes the width of the Gaussian and q(i)

and p(i) are the coordinate and momentum in the i-th
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dimension. These phase space coordinates are related to
the real and imaginary parts of the CS label:

z =

√

γ

2
q +

i

~

√

1

2γ
p (3)

which is motivated by the fact that |z〉 and z are the
eigenvector and eigenvalue of the annihilation operator
respectively,

â|z〉 = z|z〉 ; â =

√

γ

2
q̂ +

i

~

√

1

2γ
p̂ . (4)

The amplitudes in Eq. (1) are usually represented as
a product of an oscillating action exponent and smooth
pre-exponential factor,8

An(t) = Dn(t)e
i
~
Sn(t) . (5)

Several methods exist for guiding the trajectories of
the CS basis. Semiclassical methods such as Heller’s
frozen Gaussian approximation7 and the Herman-Kluk
propagator9–11 use classical trajectories and a semiclas-
sical description for the amplitudes. There are also a
number of formally exact Gaussian-based methods such
as multiple spawning (MS)12,13, coupled coherent states
(CCS)8,14–16 and variational multiconfigurational Gaus-
sians (vMCG)17,18. These methods use exact quantum
equations for the amplitudes An(t) in Eq. (1) but dif-
fer in the way that the basis |zn(t)〉 is guided. MS uses
purely classical mechanics whereas vMCG relies on com-
plicated trajectories obtained from a full variational prin-
ciple applied to the complete wavefunction |Ψ(t)〉. The
fully variational trajectories of vMCG are strongly quan-
tum: different basis vectors zn(t) couple to one another,
as well as with their amplitudes. CCS can be placed be-
tween the two approaches, relying on classical trajecto-
ries with simple quantum corrections. Trajectory based
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quantum techniques are reminiscent of classical molecu-
lar dynamics (MD) and are capable of representing quan-
tum molecular dynamics.

The main advantage of trajectory guided methods is
that most of the time the basis set follows the dynami-
cally important region, thus economising its size. How-
ever, in many cases a small trajectory guided basis is
efficient for short time period only. When trajectories in
multidimensional phase space run away from each other,
even fully variational trajectories become uncoupled and
classical. Therefore they become unable to correctly fol-
low the dynamics in strongly non-classical degrees of free-
dom, misguiding the basis. To address this issue, the
multiconfigurational Ehrenfest (MCE)19,20 approach was
suggested. In the version of MCE proposed in Ref. 20,
a regular basis set is used to represent the dynamics in a
“more quantum” subsystem instead of a single CS. The
Ehrenfest configuration basis takes the form

|ϕn(t)〉 = (a1n(t)|1〉 + a2n(t)|2〉 + . . .

+aKn(t)|K〉) |z(c)
n (t)〉 (6)

where the set of states {|1〉, |2〉, . . . , |K〉} represents an
orthonormal basis of K functions for the “quantum” sub-
system, for example, K electronic potential energy sur-
faces like in Ref. 20 or a set of K discrete value rep-
resentation (DVR) points. A single Gaussian trajectory

guided coherent state, |z(c)
n (t)〉, describes the “classical”

degrees of freedom. A single Ehrenfest configuration is
not flexible enough to describe complicated quantum dy-
namics accurately but a superposition of Ehrenfest con-
figurations

|Ψ(t)〉 =

K
∑

n=1

An(t)|ϕn(t)〉 (7)

can be converged to a quantum result. As Eq. (7) repre-
sents the whole wavefunction as a superposition of Ehren-
fest configurations, even “classical” degrees of freedom
are represented on a fully quantum level irrespective of
the fact that within a given configuration, such as in Eq.
(6) they are described by a single CS. Coupling between
the coefficients An(t) in Eq. (7) ensures that the trajecto-

ries |z(c)
n (t)〉 are weighted according to quantum dynam-

ics. Several versions of MCE exist, and results have been
obtained for spin-boson model19, non-adiabatic dynam-
ics of pyrazine20, dynamics of adsorption on the surface21

and dynamics of quantum qubits coupled with the elec-
tromagnetic field22. Gaussian multiconfigurational time-
dependent Hartree (G-MCTDH)23 method also relies on
the same idea of using regular MCTDH wavefunctions for
a small “quantum” subsystem and Gaussian wavepackets
for “classical” degrees of freedom.

In this paper we suggest a variation of MCE, which
– instead of a regular basis – uses Gaussian CSs for the
“quantum” subsystem. The algorithm, which is termed
as two-layer CCS (2L-CCS), is fully trajectory based and

represents quantum molecular dynamics. Many quan-
tum techniques, which use the basis of trajectory guided
Gaussian CS, have been implemented in Cartesian frame
(Cartesian CCS24, MS12,13, MCE25–28, vMCG17,18 on
the fly) so that they would work similar to classical MD.
A great deal of effort has been invested in the develop-
ment of quantum direct dynamics, which uses electronic
structure software packages on-the-fly to estimate forces
which in turn guide the trajectories and the matrix el-
ements of quantum coupling between them.12,13,25–28 So
far these direct dynamics methods have been focused on
electronically non-adiabatic effects. Being a trajectory
based method 2L-CCS is well suited to Cartesian frame
implementation, and we point out from the outset that
the future aim is to implement 2L-CCS in this manner so
that it may provide a better description of tunnelling in
ab initio direct dynamics simulations than standard CCS.
Throughout the remainder of the paper, atomic units are
used with ~ = 1, and the coherent state parameter γ in
Eq. (2) is set to unity.

II. WORKING EQUATIONS OF TWO-LAYER CCS

A. Wavefunction ansatz

Assuming that the system is comprised of “quantum”
and “classical” subsystems we represent the Ehrenfest
configuration29–31 as follows:

|ϕn(t)〉 =
(

a1n(t)|z(q)
1n (t)〉 + a2n(t)|z(q)

2n (t)〉 + . . .

+aKn(t)|z(q)
Kn(t)〉

)

|z(c)
n (t)〉 . (8)

In this equation |z(q)
kn 〉 =

∏M(q)

i=1 |z(i)
kn〉 and |z(c)

n 〉 =
∏M
i=M(q)+1 |z

(i)
n 〉 are the coherent states covering M (q)

“quantum” and the remaining “classical” degrees of free-
dom. The difference between Eqs. (6) and (8) is that in
the latter the “quantum” subsystem is represented not
on a regular fixed basis set but on the basis of trajec-
tory guided CSs. The “classical” subsystem is still rep-
resented by a single Gaussian. The total wavefunction is
a superposition of configurations:

|Ψ(t)〉 =

N
∑

n=1

Dn(t)|ϕn(t)〉 (9a)

=
N
∑

n=1

Dn(t)

[

K
∑

k=1

akn(t)|z(q)
kn 〉
]

|z(c)
n (t)〉 (9b)

=

N
∑

n=1

Dn(t)

[

K
∑

k=1

akn(t)|zkn(t)〉
]

. (9c)

In Eq. (9) N is the number of configurations andK is the

number of Gaussian CSs |z(q)
kn 〉 describing the “quantum”

subsystem in a single configuration. Therefore, even the
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“classical” subsystem is treated on a fully quantum level
and the ansatz of Eq. (9) is formally exact: it can be
converged (at least in principle) to the fully quantum
result. It is convenient to introduce full dimensional CS:

|zkn(t)〉 = |z(q)
kn (t)〉|z(c)

n (t)〉 (10)

as in Eq. 9c, bearing in mind that for a given index n all
|zkn(t)〉 with different k differ only by their “quantum”
part.

Coherent states are not orthogonal: the overlap be-
tween two states is described by the overlap matrix32:

〈zkn|zlm〉 = exp

[

z∗knzlm − z∗knzkn

2
− z∗lmzlm

2

]

. (11)

The matrix elements of the Hamiltonian can be written
in coherent state basis by representing the Hamiltonian
with creation and annihilation operators in normal order
(powers of the creation operator to the left of those of
the annihilation operator); the matrix elements become

〈zkn|Ĥ|zlm〉 = 〈zkn|zlm〉Hord(z
∗
kn, zlm) , (12)

where in the normal ordered Hamiltonian Hord(: â
†, â :)

â† and â are simply replaced by z∗ and z respectively.

B. Equations of motion

Time-dependence of the phase space coordinates of the

CSs |z(q)
kn 〉 and |z(c)

n 〉, as well as their corresponding am-
plitudes akn(t) and Dn(t), determine the time-evolution
of the wavefunction. The equations of motion can be
obtained from a full variational approach by taking (9)
as a trial state and optimising all wavefunction param-

eters {z(q)
kn , z

(c)
n , akn, Dn} at once. This procedure has

been applied to Gaussian based wavefunctions in Refs.
6, 18, 23, 33, however one can also treat some of the
parameters variationally while prescribing the dynamics
of the others. Under this scheme, different methods can
be used within a single configuration to propagate the
“quantum” and “classical” sub-systems. In this work
we use predetermined CCS and Ehrenfest type trajecto-
ries for zkn and zn respectively, which intuitively follows
from our experience with each method. This is com-
bined with variational equations for the amplitudes in
each layer which ensures that 2L-CCS is an (in princi-
ple) exact technique. It is important to point out that
the prescribed CS dynamics is not an approximation, but
rather a convenient, simple and stable way of guiding the
basis set. Providing the basis set sufficiently covers phase
space over the time frame of a calculation, the exact re-
sult may be obtained. See for example Ref. 34 where the
efficiency of guiding the basis by classical and variational
trajectories is compared, and both are shown to converge
to the same result. The particular prescriptions employed
here find their justification in the time-dependent varia-
tional principle (TDVP) when it is applied to individual

basis set elements and configurations. The derivation of
the working equations which involves using normalisation
constraints and appropriate choice of phases for the CS
elements, is presented separately in Appendix A.

In the first layer the standard CCS basis equation

ż
(q)
kn = −i∂Hord(z

∗
knzkn)

∂z
(q)∗
kn

(13)

is used to describe the dynamics of “quantum” coordi-
nates. As has been discussed in Refs. 8, 14, 15 the tra-
jectories (13) are classical in nature, although the Hamil-
tonian includes quantum corrections. The amplitudes are
conveniently written as a product of an oscillating action
exponent and smooth pre-exponential factor

akn = dkne
iSkn , (14)

with classical action

Skn =

∫ t

0

[

i

2
(z∗knżkn − ż∗knzkn) −Hord(z

∗
kn, zkn)

]

dt′ .

(15)
The equations of motion for d can be found as

i

K
∑

l=1

〈zkn|zln〉ḋlneiSln =

K
∑

l=1

〈zkn|zln〉δ2H ′
kn,lndlne

iSln ,

(16)
where

δ2H ′
kn,ln = Hord(z

∗
kn, zln) −Hord(z

∗
ln, zln)

− i(z∗kn − z∗ln)żln . (17)

This is the same as in the CCS method, the only differ-
ence being that the Hamiltonian matrix elements have
explicit time-dependence due to the motion of “classi-
cal” modes. Equations (13), (15) and (16) constitute the
first layer of the two-layer CCS approach.

For the second layer of “classical” degrees of freedom,
MCE equations are used for the trajectories:

ż(c)
n = −i∂〈ϕn|Ĥ|ϕn〉

∂z
(c)∗
n

(18a)

= −i
K
∑

kl=1

d∗kndln〈z
(q)
kn |z

(q)
ln 〉∂Hord(z

∗
knzln)

∂z
(c)∗
n

ei(Sln−Skn) .

(18b)

The Ehrenfest trajectories (18) account for the effect of
the “quantum” subsystem on the motion of the “clas-
sical” subsystem by averaging the Hamiltonian of clas-
sical DOF with the wavefunction of “quantum” subsys-
tem. The “classical” DOF Hamiltonian itself also in-
cludes CCS quantum corrections. Then, upon substitu-
tion of the resulting wavefunction in the time-dependent
Schrödinger equation, the equations for the amplitudes
of configurations are found to be

i
N
∑

m=1

〈ϕn|ϕm〉Ḋm =
N
∑

m=1

[

〈ϕn|Ĥ|ϕm〉 − i〈ϕn|ϕ̇m〉
]

Dm ,

(19)
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which can be recast in terms of the basic variables as

i

N
∑

m=1

K
∑

kl=1

d∗kndlm〈zkn|zlm〉Ḋme
i(Slm−Skn) =

N
∑

m=1

K
∑

kl=1

〈zkn|zlm〉d∗kn
(

−iḋlm + ∆2H ′
kn,lmdlm

)

Dme
i(Slm−Skn) , (20)

with the coupling matrix ∆2H ′ being:

∆2H ′
kn,lm = Hord(z

∗
kn, zlm) −Hord(z

∗
lm, zlm) − i(z∗kn − z∗lm)żlm . (21)

Thus, the Ehrenfest equations of motion in Eqs. (18)
and (20) are used for the trajectories and amplitudes of
the “classical” layer. We again emphasise that even the
second layer “classical” subsystem is treated on a fully
quantum level. The only difference between “classical”
and “quantum” levels is that the “classical” system is
represented by a single Gaussian and single trajectory per
configuration, while the “quantum” subsystem is repre-
sented by a more flexible linear combination of K Gaus-
sians per configuration guided by their individual trajec-
tories. Similar to the CCS technique, the right hand side
of the coupled equations (16) and (20) is small. As has
been shown previously (see Refs. 8, 14–16, 18), matrices
δ2H ′ and ∆2H ′ are small, sparse and have zero diagonal.

It should be noted that the two-layer equations of mo-
tion can be simplified by using the fact that 〈zkn|zln〉 =

〈z(q)
kn |z

(q)
ln 〉 and by splitting the action (15) into two parts,

one depending on both indices kn and the other depend-
ing only on the configuration index n – see Appendix
A.

In this section we have described another approach to
guide the trajectories of a Gaussian CS basis set. Within
a single configuration n a small set of “quantum” DOF

should be sampled with coherent states z
(q)
kn such that all

important parts of the phase space of the “quantum” sub-
system are covered. Using several CSs per configuration
to parametrise the “quantum” subsystem describes quan-
tum delocalisation better. The trajectories of “quan-
tum” subsystem are given by CCS equations (13) and
quantum effects are taken into account via the coupling
of their amplitudes (16). The “classical” DOF are de-
scribed by a single trajectory, which is influenced by the
“quantum” subsystem via the Ehrenfest equation (18).
The description of “classical” DOF is less detailed. To
account properly for quantum dynamics of the “classi-
cal” subsystem the configurations are weighted with their
amplitudes (19) and equations for the coupling coeffi-
cients are derived. The specific choice of the trajectories
(13) and (18), which are almost as simple and computa-
tionally inexpensive as classical trajectories ensures the
smallness and sparsity of the quantum coupling matrices
in Eqs. (16) and (20). In summary, Eqs. (13), (16), (18)
and (20) constitute the proposed 2L-CCS approach. If
only one CS is used to describe the “quantum” subsys-
tem (k = 1 in Eq. (9b)) then 2L-CCS yields the standard

CCS method.

III. IMPLEMENTATION AND RESULTS

A. Hamiltonian

The test system investigated is that of a particle sub-
jected to an asymmetric double well potential whose mo-
tion is also coupled to a bath; this same system was stud-
ied by the matching-pursuit/split-operator Fourier trans-
form (MP/SOFT) method35, CCS36 and recently by a
trajectory-guided strategy using a configuration interac-
tion (CI) expansion of the wavefunction37. The model
Hamiltonian

Ĥ =
p̂(1)2

2
− q̂(1)

2

2
+
q̂(1)

4

16ξ
+

P̂2

2
+

(

1 + λq̂(1)
)

Q̂2

2
(22)

is M -dimensional, where (p̂(1), q̂(1)) are the position and
momentum operators of the 1D tunnelling (“quantum”)

subspace and (Q̂, P̂) are the position and momentum
operators of the (M − 1)-dimensional (“classical”) sub-

space, with Q̂ =
∑M
i=2 q̂

(i) and P̂ =
∑M
i=2 p̂

(i). As in
previous works35–37 we consider the case of M = 20, set
the potential parameter ξ = 1.3544 and the system-bath
coupling constant λ = 0.1. As the coupling is linear
with respect to q(1) and quadratic with respect to Q,
the model describes the case of asymmetric tunnelling,
because the coupling with the bath increases the right
hand well depth for q(1) < 0 and decreases it for q(1) > 0.
For the initial state all bath modes are in their harmonic
ground states.

For illustrative purposes we also show the equations

of motion used in 2L-CCS. If we denote z
(q)
kn = (q

(1)
kn +

ip
(1)
kn )/

√
2 and z

(c)
n = (Qn+ iPn)/

√
2, then the equations

for the “quantum” modes read

q̇
(1)
kn = p

(1)
kn (23a)

ṗ
(1)
kn = − (M − 1)λ

4
−
(

3

8ξ
− 1

)

− q
(1)3

kn

4ξ
− λ

2
Q2
n , (23b)
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while the “classical” modes are governed by

Q̇n = Pn (24a)

Ṗn = −Qn − λ〈ϕn|q̂(1)|ϕn〉Qn , (24b)

with k = 1, 2, . . . ,K and n = 1, 2, . . . , N . The equations
(23) and (24) are different from those of classical me-
chanics. Most importantly, in the two-layer context the
“classical” modes couple with the “quantum” subsystem
via the average value of the “quantum” mode position
operator q̂(1) over the n-th configuration |ϕn〉; this aver-
age is explicitly given by

〈ϕn|q̂(1)|ϕn〉

=

K
∑

kl=1

d∗kndln〈z
(q)
kn |z

(q)
ln 〉

(

z
∗(q)
kn + z

(q)
ln√

2

)

ei(S
(q)
ln

−S
(q)
kn

) .

(25)

Clearly, the “quantum” nature of the 1D tunnelling mode
makes itself present in the equations of motion for the
“classical” (bath) coordinates. This clarifies the funda-
mental idea behind the two-layer approach: by taking
into account this distinction between the different degrees
of freedom at the level of the equations of motion for the
“classical” (bath) modes, one hopes to enhance the qual-
ity of the configurations |ϕn〉 used to expand the system
wavefunction as in (9), in the sense that the number of
configurations needed to converge the results is expected
to be minimised.

B. Benchmark calculation

The benchmark calculation relies on the fact that the
modes (Q̂, P̂) are equivalent and thus effectively indistin-
guishable. As a result, one may use permutational sym-
metry and combine the multidimensional basis functions
in groups. The approach is equivalent to second quanti-
zation and further details may be found in Appendix B,
or Ref. 38 which also contains full results for the model
Hamiltonian (22). The benchmark calculations are fully
converged for the set of parameters used in this article
for Hamiltonian (22).

C. Initial basis set sampling for CCS and 2L-CCS

In a multidimensional system only a basis which is
sufficiently compressed and biased to the position of
the initial wavefunction |Ψ(0)〉 in phase space can re-
sult in an accurate representation. For the Hamiltonian
(22) considered in this work, the initial wavefunction
|Ψ(0)〉 is a multidimensional Gaussian wavepacket with
phase space coordinates of the tunnelling mode located
at the minimum of the lower well: q(1)(0) = −2.5 and
p(1)(0) = 0.0, whilst initial coordinates of the bath mode
are q(i)(0) = 0.0 and p(i)(0) = 0.0 for i > 1. As has

been shown in Ref. 16 the quality of the initial basis can
be assessed from the norm of the wavefunction. For a
good quality basis, covering densely the phase space re-
gion where the whole wavefunction is located, the norm

〈Ψ|Ψ〉 =

N
∑

nm=1

D∗
n〈ϕn|ϕm〉Dm

=

N
∑

nm=1

D∗
nDm

K
∑

kl=1

d∗kndlme
i(Skn−Slm)〈zlm|zkn〉

(26)

becomes close to unity.
For the CCS method, initial random basis set sam-

pling of the tunnelling mode and bath modes is centered
around the initial tunnelling and bath positions respec-
tively, and conducted via a Monte Carlo distribution of
the form8

f(z(i)) ∝ exp(−α(i)|z(i) − z(i)(0)|2) . (27)

The compression parameter α(i) sets the width of the
distribution in the i-th degree of freedom; the larger the
value of α(i), the more compressed the distribution (this
is merely a sampling parameter and is not connected to
the width γ of the coherent state). Different initial ba-
sis set distributions can be used for different types of
modes, in this case the tunnelling and bath modes. This
is called a “pancake” distribution.16 Sampling for 2L-
CCS may proceed in exactly the same way as CCS, due
to the wavefunction ansatz (9) conveniently splitting the
basis into “quantum” and “classical” subsystems, allow-
ing “pancake” sampling.

In Ref. 36, for the tunnelling problem (22), a broad
distribution was used for the tunnelling (“quantum”)
mode and narrow distributions were used for the 19
bath (“classical”) modes. However, the result obtained
in that work was in some disagreement to that ob-
tained by other methods.35,37 Based on the sampling
of MP/SOFT and CI expansion, and results from the
benchmark calculation,38 it was established that one of
the possible reasons for this is that the bath was insuf-
ficiently sampled and a broader distribution is required.
Consequently, the CCS calculation will be repeated in
this work. However, it is not possible to sample all bath
modes from a broad distribution, as this results in CSs
that are inadequately coupled. Therefore, drawing on
inspiration from the benchmark calculation in which a
number of individual bath modes are “excited”, a ran-
dom two bath modes per configuration are sampled from
a broad distribution (“excited”) with compression pa-
rameter αb, whilst all others are sampled with an infi-
nite compression parameter. Both distributions are cen-
tred on the initial bath coordinates q(i)(0) = 0.0 and
p(i)(0) = 0.0 for i > 1. This allows the value of αb to
be smaller than if all bath modes had the same com-
pression parameter, permitting a greater range of phase
space to be sampled. Choosing two modes to be decom-
pressed rather than any other number was found to lead
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to an appropriate balance of ample bath sampling and
well conserved norm near unity; though we admit this
is quite an ad hoc approach which is left to be better
understood in future investigations. The bath for both
CCS and 2L-CCS is sampled in this way.

Increasing the number of configurations N also al-
lows the value of αb to be reduced whilst maintaining
a norm close to unity. This effect has been previously
demonstrated in Ref. 16 and can be applied in the same
manner for both CCS and 2L-CCS. For example, when
N = 2000 a value of αb = 0.8 was used for both CCS
and 2L-CCS, whilst for N = 100 a value of αb = 5.0 was
used. Table I compares the initial bath samplings used
for various K and N parameters. The tunnelling mode
is sampled from a relatively broad distribution around
the initial wavepacket coordinates q(1)(0) = −2.5 and
p(1)(0) = 0.0, as in previous work,36 with compression
parameter αs = 1.0 for all values of K and N .

Calculation of the initial amplitudes proceeds in two
stages: firstly, the set of K amplitudes for a given config-
uration n are obtained via projection of the initial “quan-

tum” coherent state distribution |z(q)
kn 〉 onto the initial

wavepacket for the tunnelling mode |Ψ(q)(0)〉

〈z(q)
ln |Ψ(q)(0)〉 =

K
∑

k=1

dkn(0)〈z(q)
ln |z(q)

kn 〉 . (28)

Once the the initial dkn amplitudes have been calculated
for all N configurations, the Dn(0) amplitudes may be
determined by projection of the entire initial coherent
state distribution |zkn〉 onto the entire initial wavepacket
|Ψ(0)〉

〈zlm(0)|Ψ(0)〉 =

N
∑

n=1

Dn(0)

K
∑

k=1

dkn(0)〈zlm(0)|zkn(0)〉 .

(29)

D. Comparison of the 2L-CCS method with standard CCS
and against benchmark results

In this section 2L-CCS is compared with standard CCS
and against the benchmark calculations for coupling pa-
rameter λ = 0.1, for which results from MP/SOFT35

and CI expansion37 methods are also available. The CCS
results are re-calculated in this work, rather than using
those from Ref. 36 in view of the improved sampling pro-
cedure mentioned in the previous section. In the CCS
calculations all modes are governed by the CCS equa-
tions (13), (15) and (16,17) with the complete system
wavefunction having the form of Eq. (1). In the 2L-
CCS calculations, CCS equations (13), (15) and (16,17)
are used for the tunnelling mode only, while the time-
evolution of the bath modes is determined by Ehrenfest
trajectories (18), which give rise to Eq. (24). Standard
CCS with the basis of N CSs can be regarded as 2L-CCS
with N configurations and with a single (K = 1) CS in
each configuration.

The quantity of interest is the cross-correlation func-
tion (CCF) between the wavefunction at time t and mir-
ror image of the initial state |Ψ̄(0)〉, i.e. the overlap
〈Ψ̄(0)|Ψ(t)〉. The mirror state coordinates are q̄(1)(0) =
+2.5 and p̄(1)(0) = 0.0 with all bath modes coordinates
and momenta set to zero. Since the mirror state is lo-
cated in an upper local energy minimum, non-zero values
of the CCF are indicative of tunnelling. The power spec-
tra, calculated by taking the Fourier transform of the
CCF as

I(ω) =

∫ T

0

Re[〈Ψ̄(0)|Ψ(t)〉]e−iωtdt (30)

will also be used for comparisons among the different
methods, and is used as an indication of the long-term
propagation accuracy. The total propagation time T =
120 time units for all methods. The comparison of the
results from various methods35,37,38 can be seen in Fig.
1 for the cross-correlation function and in Fig. 2 for
the Fourier transforms. Both CCS and 2L-CCS cross-
correlation functions compare well to the other methods
and the benchmark at early time scales (t < 25− a.u.),
and the Fourier spectra have peaks of the same frequen-
cies and similar intensities. However, the splitting of the
peaks in the spectra is not well reproduced by CCS and
2L-CCS, which may be explained by two reasons. Firstly,
the basis does not effectively cover the high energy region,
hence the high frequency peaks are not faithfully repro-
duced. A similar effect was found with CCS when applied
to the far infrared absorption spectrum of a water trimer
in Ref. 39. Secondly, the splitting of the lower energy
peak at ω = 9.5 is not as large for CCS and 2L-CCS as
it is for the benchmark because it does not begin to ap-
pear until 50 a.u. into the benchmark calculation, and
by this point Monte-Carlo noise has begun to affect the
CCS and 2L-CCS calculations, reducing their accuracy.

The CCS and 2L-CCS calculations can both be con-
verged by increasing the number of configurations N ,
whilst 2L-CCS has the additional flexibility of increas-
ing the number of basis vectors K per configuration for
convergence. As 2L-CCS uses a random sampling of basis
functions, like CCS it will be plagued by noise inherent
to the method and propagation will be most accurate
for short time scales, as mentioned above. Therefore for
these short time scales we should expect the calculation
to converge towards the benchmark result, which is what
is shown in Figs. 3 and 4. It can be seen in Fig. 3
that the quality of short-term propagation is affected by
the number of basis vectors per configuration: the larger
the value of K for the same number of configurations,
the better the result. This is illustrated qualitatively in
panels (a)–(c) by the amplitude and phase of the 2L-CCS
CCF more closely matching that of the benchmark for in-
creasing K. In panel (d), χ is defined at the integral over
| Abs(〈Ψ̄(0)|Ψ(t)〉)bench−Abs(〈Ψ̄(0)|Ψ(t)〉)2L-CCS | in the
time period shown, a measure of the cumulative error of
the 2L-CCS method. This quantitatively demonstrates
2L-CCS converging with respect to K, as χ decreases
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with increasing K.
The quality of short-term propagation also improves

with increasing number of configurations, whilst keeping
K fixed, as can be seen in Fig. 4. This is illustrated qual-
itatively in panels (a)-(c) once more, with the amplitude
and phase of the 2LCCS CCF more closely matching that
of the benchmark for increasing N , and shown quantita-
tively in panel (d) with decreasing χ for increasing N .

Whilst 2L-CCS will be most accurate for short time
scales, it is of course worthwhile to check the long time
propagation accuracy of the method, accessed via the
Fourier-transform of the cross-correlation function after
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FIG. 6: Comparison of Fourier-transforms from
benchmark and 2L-CCS: (a) 4 CSs / 100 confs,
(b) 4 CSs / 500 confs, (c) 4 CSs / 2000 confs

t = 120 a.u. This is shown in Figs. 5 and 6. In this longer
time scale we might expect that the calculation will im-
prove relative to the benchmark as we increase K and N ,
up until a point where the effect of Monte-Carlo noise at
later times outweighs the improvements made at earlier
times and no further change in the spectra is observed.
It can be seen from Fig. 5 that the Fourier-transform is
getting closer to the benchmark as K increases for the
same value of N , although the difference is not very sig-
nificant. Increasing the number of configurations has a
more profound effect on the long-term accuracy, shown
in Fig. 6, which indicates that for this particular problem
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method K N K ×N α
b

tCCS=1 tCCS=1

1 proc 16 proc
CCS 1 2000 2000 0.8 1.0 1.0
2L-CCS 1 2000 2000 0.8 1.0 1.0
2L-CCS 2 2000 4000 0.8 3.8 2.4
2L-CCS 4 2000 8000 0.8 14.5 7.8
2L-CCS 4 100 400 5.0 0.04 0.02
2L-CCS 4 500 2000 1.2 0.9 0.5

TABLE I: Sampling parameters for the simulations:
number of basis vectors per configuration K, number of
configurations N , compression for the two bath modes
αb, execution time t for one propagation step on 1 and
16 processors, where one CCS step is taken as unity.

improving the treatment of the bath via increasing N is
more important for long-term accuracy than improving
treatment of the system via increasing K. In Table I
it can be seen that by raising the number of configura-
tions, the bath compression αb can be reduced until a
stable propagation with good norm-conservation can be
obtained. By decompressing the bath modes a greater
dynamical region can be covered by the coherent states,
precisely the effect that was discussed in Sec. III C.

Despite the fact that increasing N improved the long-
term accuracy of this calculation more than increasing
K, the fact that increasing both improved the quality
of the calculation to some degree demonstrates the ad-
ditional layer of flexibility that 2L-CCS presents. This
property may be extremely useful for tackling other com-
posite problems, especially those where the tunnelling
mode may be more complex to represent.

E. Comparison of numerical performance of the 2L-CCS
and the standard CCS methods

The time step of integration for both standard CCS
and 2L-CCS was ∆t = 0.1 a.u., which gave good norm-
conservation for both cases. Numerically the two-layer
method scales with the number of basis vectorsK and the
number of configurations N , but its performance – simi-
larly to CCS – does not depend explicitly on the number
of degrees of freedom. This is due to the fact that neither
the CCS Eqs. (13), (15) and (16,17) nor the Ehrenfest-
equation (18) scale directly with the dimensionality.

For the standard CCS method with N configurations,
an N × N linear system (16) has to be solved at each
time step. For 2L-CCS with K basis vectors per config-
uration, (16) has to be solved N times (once per con-
figuration) every time step, but the size of each linear
system is K × K. In addition, (19) has to be solved
for amplitude D, which involves a linear system of size
N × N . Solving N linear systems of size K × K and
one linear system of size N × N is more efficient than
solving a single [K×N ]× [K×N ] linear system, as long
as K and N are adequately balanced. This means that
2L-CCS will be numerically favourable to a CCS calcu-

lation that has K × N configurations. The comparison
of the numerical performance of the two methods can be
seen in Table I. The CCS calculation with 2000 configura-
tions and the 2L-CCS calculation with 500 configurations
and 4 basis vectors per configuration illustrates the point
made above. Although this 2L-CCS calculation is only
twice as fast as the CCS calculation on 16 processors, for
problems where K and N can be more evenly balanced
(such as real problems with more complicated tunnelling
effects) this effect will be significantly enhanced.

The 2L-CCS calculation also benefits from paralleli-
sation to a greater extent than CCS, partially demon-
strated in Table I and more profoundly shown in Fig. 7.
For both CCS and 2L-CCS, as the number of processors
increases the bottleneck of the caclulation comes from
solution of the system of N linear equations, Eqs. (16)
and (20) respectively. However, in 2L-CCS a propaga-
tion step also involves the solution of N lots of a system
of K linear equations, Eq. (16), which is much quicker.
Therefore the rest of the 2L-CCS propagation step can
be sped up around the solution of the system of N linear
equations, leading to greater parallel efficiency. It should
be noted that this speedup does not take into account
basis set generation, as the parallel speedup is based on
a propagation step only, however basis set generation is
rapid in comparison to propagation. Also, in Fig. 7 the
speedup of 2L-CCS (1 CS / 2000 conf) is slightly below
that of CCS (2000 conf), despite being equivalent calcu-
lations. The reason for this is that in 2L-CCS the time
dependence of two amplitudes is calculated every prop-
agation step (16) and (19), whereas in CCS only one is
calculated (16).

The OpenMP shared memory construct was used to
parallelise both CCS and 2L-CCS, requiring very little
modification of the serial code. This did limit the num-
ber of threads to a maximum of 16, as computational
hardware with 16 processors was used for the calculations
and the general rule of thumb of 1 processor per thread
was obeyed. For larger and more complicated calcula-
tions MPI parallelisation can be used, although this may
require significant restructuring of the serial code. We
leave this to further investigations.

IV. CONCLUSIONS

In this paper a two-layer scheme has been proposed
for Gaussian based quantum dynamics, motivated by the
MCE19,20 and CCS8,14–16 methods. Multilayer schemes
are known in other approaches to quantum dynamics,
such as the ML-MCTDH3–5 and ML-G-MCTDH6 meth-
ods, and the current paper introduces similar ideas for a
Gaussian based trajectory guided technique. The scheme
allows a flexible representation of the wavefunction and
enables the use of different dynamical descriptions for dif-
ferent subsystems of the whole quantum mechanical sys-
tem. The inner “quantum” system is represented by CCS
dynamics, whilst the outer “classical” bath uses Ehren-
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fest trajectories. The 2L-CCS method may therefore be
seen as a version of MCE where Gaussian CSs are used
as a basis for both “quantum” subsystem and “classical”
bath.

The scheme was tested on a 20-dimensional asymmet-
ric double well potential previously studied by the CCS36,
MP/SOFT35 and CI expansion37 methods. The 2L-CCS
method was found to compare favourably with previous
results, and with a benchmark study on the potential.38

The scheme was found to converge in both the short and
long time scales by increasing the number of “quantum”
basis vectors per configuration, K, and the number of
configurations, N . Both the short and long term propa-
gation represented an improvement over standard CCS,
although admittedly it was not significantly closer to the
benchmark. However, the purpose of the test with Hamil-
tonian (22) was to show the 2L-CCS method works, and
converges appropriately. The aim of the scheme is to be
implemented in the form of on-the-fly direct dynamics,
for which the improved treatment of tunnelling that 2L-
CCS offers over CCS will be extremely beneficial for more
challenging real problems.

The 2L-CCS method can also represent an increase in
numerical efficiency over the CCS method. For example,
a given 2L-CCS calculation which uses K basis vectors
and N configurations, will be more numerically efficient
than an equivalent CCS calculation which uses K × N
configurations. For calculations where K and N can be
adequately balanced, this effect will be significant. Fur-
thermore, 2L-CCS can benefit greatly from parallelisa-
tion, leading to a greater speedup for a propagation step
than CCS on the same number of processors.

The application of 2L-CCS to Hamiltonian (22) pro-
vided a valid test of an interesting new propagation
scheme, and illustrated the flexibility of the wavefunction
representation. This can lead to further investigations on
composite systems where the quantum and the classical
modes can be separated. Furthermore, since the method

is particularly accurate for short-time scales it may be
combined with a basis set reprojection technique, allow-
ing accurate propagation for a short time period until the
basis is required to be re-centered and propagated again
for another short time period. Both these advantages of
the 2L-CCS method may be utilised for problems such as
the modelling of high-order harmonic generation40 where
the “principal” mode, the motion of an electron which is
aligned in the direction of the field, is “quantum” and the
other degrees of freedom are “classical”. Investigations
are underway.
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Appendix A: Deriving the working equations

In this Appendix the equations for the 2L-CCS method
are derived. As mentioned in Sec. II, they do not fol-
low from a full variational treatment of the complete
wavefunction – where all parameters are optimised at
once – but rather from a hierarchical optimisation pro-
cedure, where the time-dependent variational principle
(TDVP)41 is applied to different subsets of parameters at
a time. The dynamics of the first layer quantum modes

z
(q)
kn is prescribed according to equations of motion that

follow from the TDVP applied to a single CS. In turn,
the dynamics of coefficients akn and classical coordinates

z
(c)
n follows from the TDVP applied to individual config-

urations |φn〉 (and with the z
(q)
kn regarded as simple time-

dependent functions). The second layer amplitudes Dn

have their dynamics determined from the TDVP applied
to the complete wavefunction (with the configurations
|φn〉 regarded as a guided basis set).

Let us briefly recall the basic concepts of the TDVP:
suppose we are given a trial state |ψ〉, not necessar-
ily normalised, parametrised by a set of n real param-
eters (ξ1, ξ2, . . . , ξn)

42; this is abbreviated as ψ = ψ(ξ).
The equations of motion for the time-dependent param-
eters ξ are obtained by making the action functional

S[ψ] =
∫ t2

t1
L dt stationary under the boundary condi-

tions: δψ(t1) = δψ∗(t1) = 0 and δψ(t2) = δψ∗(t2) = 0;
here the Lagrangian L is

L(ξ, ξ̇) =
i

2

〈ψ|ψ̇〉 − 〈ψ̇|ψ〉
〈ψ|ψ〉 − 〈ψ|Ĥ|ψ〉

〈ψ|ψ〉 . (A1)

The stationary condition δS = 0 leads directly to the
Euler-Lagrange equations:

∂L
∂ξl

− d

dt

∂L
∂ξ̇l

= 0 for l = 1, . . . , n (A2)

provided all variations δξl can be performed indepen-
dently. From (A2) the equation of motion for each of
the ξl follows.

The variational solution ψ(t) = ψ(ξ(t)) obtained in
this way represents the best achievable solution with the
limited set of parameters ξ. If there is a sufficient number
of parameters (i.e. if the trial state proves to be flexible
enough) this solution will converge to the exact solution
of the Schrödinger equation for the particular system at
hand, as long as normalisation is ensured and a proper
phase factor, which is just the action S(ψ(t)) = S(ξ(t))
evaluated over the orbit ξ(t), is added to |ψ〉43. The
resulting wavefunction |Ψ(t)〉 relates to |ψ(t)〉 in the fol-
lowing way:

|Ψ(t)〉 =
|ψ(t)〉

√

〈ψ(t)|ψ(t)〉
eiS(ψ(t)) . (A3)

The overall action phase is immaterial if |Ψ(t)〉 is to
be regarded as the complete wavefunction of the sys-
tem in question. However, the fundamental strategy of

the present method is to express the system’s complete
wavefunction as a linear combination of such variation-
ally optimised solutions, which then act as a guided ba-
sis. In this scenario, the phase plays an important role in
smoothing out oscillations thus allowing for a more accu-
rate description of interference effects between the basis
elements.

1. Single CS dynamics

The fundamental block in the standard CCS method
and all its variants is the single coherent state: |ψ〉 = |z〉.
When |z〉 is used as a trial state in Eq. (A1) we obtain
the Lagrangian:

L =
i

2
(z∗ż − ż∗z) −Hord(z

∗, z) (A4)

where the ordered Hamiltonian Hord is like in Eq. (12).
Taking z and z∗ as independent variables, the Euler-
Lagrange equations (A2) translate to

∂L
∂z∗

− d

dt

∂L
∂ż∗

= 0 (A5)

plus an equivalent complex conjugate equation. The
equation of motion for z follows immediately:

ż = −i∂Hord(z
∗, z)

∂z∗
(A6)

which is just the familiar pair of Hamilton equations from
classical mechanics, but written in complex notation.
The optimised state in this case would be |z(t)〉eiS(z(t)).

2. First layer (“quantum” modes)

The prototype system suitable for the method is anM -
dimensional system composed of two sub-systems: the
first contains a total of M (q) “quantum” DOF and the
second corresponds to the remaining “classical” DOF.
The configurations |ϕn〉 in Eq. (8) reads44:

|ϕn〉 =

[

K
∑

k=1

bkn|z(q)
kn 〉
]

|z(c)
m 〉 (A7a)

=

K
∑

k=1

bkn|zkn〉 (A7b)

where in the second line the primitive CS basis is abbrevi-

ated as |zkn〉 = |z(q)
kn 〉|z

(c)
m 〉. The parameters of each |ϕn〉

have to be optimised individually, so that later these con-
figurations can be used as a guided basis when expressing
the complete wavefunction.

However, when taking (A7) as a trial-state, we shall re-
gard as variational parameters only the set of coefficients

bkn and the “classical” coordinates z
(c)
n . The “quantum”
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coordinates z
(q)
kn , meanwhile, will have their dynamics

prescribed according to the single CS result, Eq. (A6)
[which in the present context translates to Eq. (13) of
Sec. II]. This is done in order to avoid complicated equa-

tions of motion for the coordinates z
(q)
kn which would oth-

erwise result from the variational procedure.
The first step would be to write down the Lagrangian

L of Eq. (A1) taking |ψ〉 = |ϕn〉. However, owing to
the non-orthogonality of the CSs used in Eq. (A7) this
straightforward approach leads to somewhat cumbersome
Euler-Lagrange equations.

Aiming at a simpler derivation, we proceed as fol-
lows: using a sub-index n to refer to quantities calculated
within the n-th configuration, and denoting the norm by

Nn = 〈ϕn|ϕn〉 =

K
∑

kl=1

b∗kn〈z
(q)
kn |z

(q)
ln 〉bln , (A8)

the Lagrangian

Ln =
i

2

〈ϕn|ϕ̇n〉 − 〈ϕ̇n|ϕn〉
〈ϕn|ϕn〉

− 〈ϕn|Ĥ|ϕn〉
〈ϕn|ϕn〉

(A9)

may be expressed as

Ln =
Ln
Nn

− i

2

d logNn
dt

(A10)

where the implicitly defined Ln, given by

Ln = i〈ϕn|ϕ̇n〉 − 〈ϕn|Ĥ|ϕn〉 (A11)

is exactly Ln(Nn = 1).
We wish to work with Ln rather than with Ln, but we

cannot simply make Nn = 1 in the action functional, as
this prevents us from performing independent variations
of the amplitudes bkn, which is a necessary assumption
if the Euler-Lagrange equations are to be obtained. To
overcome this, a Lagrange multiplier λn is introduced in
the action functional to take care of the constrainNn = 1;
thus the action can be rewritten as

Sn = S[λn, ϕn] =

∫ t2

t1

(

Ln
Nn

− λn(Nn − 1)

)

dt (A12)

where the surface terms that come from the derivative
− i

2
d logNn

dt
of Eq. (A10) have been omitted for they van-

ish trivially upon variation of Sn.
Let us temporarily denote by {α∗

l , α} the set of (com-
plex) parameters of the trial state: |ϕn〉 = |ϕn(α∗, α)〉.
If we impose the condition δSn = 0 and use the fact that
variations {δλ, δα∗

l , δαl} are now all independent, we find
that the following set of equations must hold:

1

Nn

(

∂Ln
∂α∗

l

− d

dt

∂Ln
∂α̇∗

l

)

−
(

λn +
Ln
N2
n

)

∂Nn
∂α∗

l

= 0 (A13a)

1

Nn

(

∂Ln
∂αl

− d

dt

∂Ln
∂α̇l

)

−
(

λn +
Ln
N2
n

)

∂Nn
∂αl

= 0 (A13b)

Nn − 1 = 0 (A13c)

We shall work with this alternative form of the Euler-
Lagrange equations rather than the one in Eq. (A2).

Substituting the configuration ansatz of Eq. (A7), into
the Lagrangian Ln of Eq. (A11), it reads:

Ln = i

K
∑

kl=1

(

b∗kn〈z
(q)
kn |z

(q)
ln 〉ḃln + b∗kn〈z

(q)
kn |ż

(q)
ln 〉bln

)

+
i

2
(z(c) ∗
n ż(c)

n − ż(c) ∗
n z(c)

n ) − 〈φn|Ĥ|φn〉 . (A14)

Following this, the set of equations (A13) can be
rewritten in terms of the different parameters of the trial
state: for the classical mode coordinates, we get imme-
diately from Eq. (A13a):

∂Ln

∂z
(c) ∗
n

− d

dt

∂Ln

∂ż
(c) ∗
n

= 0 (A15)

since Nn does not depend upon these coordinates. This
leads at once to the Ehrenfest equation

ż(c)
n = −i

K
∑

kl=1

b∗knbkl〈z
(q)
kn |z

(q)
ln 〉∂Hord(z

∗
kn, zkl)

∂z
(c)∗
n

, (A16)

which shows that the “classical” modes z
(c)
n experience a

potential averaged over all sets of quantum modes.
On the other hand, for the amplitudes bkn Eqs. (A13)

reduce to

∂Ln
∂bkn

− d

dt

∂Ln

∂ḃkn
− (λn + Ln)

∂Nn
∂bkn

= 0 (A17a)

∂Ln
∂b∗kn

− (λn + Ln)
∂Nn
∂b∗kn

= 0 . (A17b)

These two equations are equivalent but, since ḃ∗kn does
not appear in Ln, it is easier to work with the second
one. Moreover, because Nn is linear in the amplitudes,
we can easily find λn by multiplying Eq. (A17b) with
b∗kn, summing over k and using the fact that Nn = 1;
this gives

λn + Ln =

K
∑

k=1

b∗kn
∂Ln
∂b∗kn

,≡ υ̇n (A18)

where the quantity υ̇n is defined for convenience. Hence,
combining Eqs. (A18) and (A17b), it follows that

K
∑

l=1

〈z(q)
kn |z

(q)
ln 〉(iḃln − υ̇nbln)

=

K
∑

l=1

〈z(q)
kn |z

(q)
ln 〉

[

H(z∗kn, zln) − i
〈z(q)
kn |ż

(q)
ln 〉

〈z(q)
kn |z

(q)
ln 〉

]

bln .

(A19)

Finally, we introduce new amplitudes dnk according to
the following transformation:

bkn = (dkne
iS

(q)
kn )e−iυn = (akne

−iθ(c)n )e−iυn (A20)



14

where akn are identified as the coefficients in (8) and S
(q)
kn

is the quantity

S
(q)
kn =

∫ t

0

[

i

2
(z

(q)∗
kn ż

(q)
kn − ż

(q)∗
kn z

(q)
kn ) −Hord(z

∗
kn, zkn)

]

dt′

(A21)
which can be interpreted as the action of the quantum
modes with the classical subsystem regarded as an exter-
nal system.

The purpose of the change of variables in Eq. (A20)
is threefold: first, it effectively cancels the υ̇n on the
left-hand side of Eq. (A 2); second, the derivative of the

action Ṡ
(q)
ln , when combined with the remaining terms on

the right-hand side of Eq. (A 2), gives the familiar CCS
equation for the new amplitudes dkn – which is exactly
Eqs. (16-17) of Sec. II – and third: if the configuration
|ϕn〉 is rewritten together with its phase S(ϕn) [as it
appears in the full wavefunction ansatz; see Eq. (A23)
below] in terms of the new amplitudes dkn, we recover
the optimised phase for the quantum basis functions:

|ϕn〉eiS(ϕn) =

[

K
∑

k=1

dkn|z(q)
kn 〉eiS

(q)
kn

]

|z(c)
n 〉eiθ(c)m (A22a)

=

K
∑

k=1

dkn|zkn〉eiSkn , (A22b)

where in the last equation Skn is the action defined in Eq.
(15) of Sec. II. Notice that when we write the configura-
tion as in (A22a), explicitly separating the subsystems,

we see that the “classical” modes |z(c)
n 〉 are left with a

geometric phase θ
(c)
n = i

2

∫ t

0
(z

(c)∗
n ż

(c)
n − ż

(c)∗
n z

(c)
n )dt′.

3. Second layer (“classical” modes)

As stated earlier, the basic idea in the two-layer formu-
lation is to use the optimised configurations of Eq. (A22)
as the basis functions for the complete wavefunction of
the system |Φ〉 which is

|Φ〉 =

N
∑

n=1

An|ϕn〉eiS(ϕn) . (A23)

We shall once again employ the TDVP, this time taking
only the amplitudes An as variational parameters, while
using the previously individually optimised dynamics for
the configurations |ϕn〉; the implicit assumption is that
the single-configuration dynamics can be regarded as a
good approximation for the dynamics that would result
from a full variational approach.

As in the previous case, it is convenient to work with
the Lagrangian L, defined as:

L = i〈Φ|Φ̇〉 − 〈Φ|Ĥ|Φ〉 (A24)

and the alternative action functional in Eq. (A12), which
includes a Lagrange multiplier to enforce normalisation.
Here, the norm N reads:

N = 〈Φ|Φ〉 =

N
∑

mn=1

A∗
nAm〈ϕn|ϕm〉ei(S(ϕm)−S(ϕn)) ,

(A25)
while L is explicitly given by the expression:

L =

N
∑

nm=1

[

iA∗
nȦm〈ϕn|ϕm〉

+A∗
nAm

(

i〈ϕn|ϕ̇m〉 − Ṡϕm
〈ϕn|ϕm〉

)

−A∗
nAm〈ϕn|Ĥ|ϕm〉

]

ei(S(ϕm)−S(ϕn)) . (A26)

The formalism developed earlier applies here in the exact
same manner; in the present context, the Euler-Lagrange
equation (A13b) translates to

∂L

∂A∗
n

− (λ+ L)
∂N

∂A∗
n

= 0 (A27)

since L of Eq. (A26) does not depend on Ȧ∗
n. The value

of the multiplier can be obtained as before; this time,
since A∗

n appears linearly in all the terms of L, we find

λ =

N
∑

n=1

A∗
n

∂L

∂A∗
n

− L = 0 , (A28)
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so that the equation for A reads:

N
∑

m=1

〈ϕn|ϕm〉(iȦm − LAm)ei(S(ϕm)−S(ϕn))

=

N
∑

m=1

[

〈ϕn|Ĥ|ϕm〉 − i〈ϕn|ϕ̇m〉

+Ṡm〈ϕn|ϕm〉
]

Ame
i(S(ϕm)−S(ϕn)) . (A29)

Defining new amplitudes Dm through the relation

Am = Dme
−iS (A30)

we are directly led to Eq. (19) of Sec. II, from where the
equations of motion (20-21) for Dn follows.

Finally, we write down the phase-corrected complete
wavefunction |Ψ〉 = |Φ〉eiS :

|Ψ〉 =
N
∑

n=1

Dn|ϕn〉eiS(ϕn) (A31a)

=
N
∑

n=1

Dn

[

K
∑

k=1

dkn|z(q)
kn 〉eiS

(q)
kn

]

|z(c)
n 〉eiθ(c)m (A31b)

=

N
∑

n=1

Dn

K
∑

k=1

dkn|zkn〉eiSkn (A31c)

which is exactly Eq. (9c) given in Section II [after sub-
stituting akn for dkn in that equation, using Eq. (14)].
This completes the derivation of the working equations
of the 2L-CCS method.

Appendix B: Benchmark calculations

The wavefunction is represented as a basis set expan-
sion

|Ψ(t)〉 =

Nbth
∑

j=1

Nsys
∑

n=1

cjn(t)|ψb
j 〉|ψs

n〉, (B1)

in which cjn(t) are complex, time-dependent amplitudes,
|ψb
j 〉 is a time-independent basis function for the bath

modes and |ψs
n〉 is a time-independent basis function for

the system mode. The number of bath and system basis
functions are given by Nbth and Nsys respectively. Sub-
stitution into the time-dependent Schrödinger equation
leads to an equation for the time-dependence of the am-
plitudes

dcim(t)

dt
= −i

Nbth
∑

j=1

Nsys
∑

n=1

Himjncjn(t), (B2)

where Himjn is the Hamiltonian matrix

Himjn = 〈ψb
i ψ

s
m|Ĥ|ψb

j ψ
s
n〉

= 〈ψs
m| p̂

(1)2

2
− q̂(1)

2

2
+
q̂(1)

4

16η
|ψs
n〉δij

+ 〈ψb
i |

P̂2

2
+

Q̂2

2
|ψb
j 〉δmn

+
λ

2
〈ψb
i |Q̂2|ψb

j 〉〈ψs
m|q̂(1)|ψs

n〉.

(B3)

The bath and system basis functions are orthonormal
(see below), a fact that has been exploited in the above.

The bath modes are nearly harmonic, therefore they
can be represented by harmonic oscillator basis functions.
A complete description of the bath would involve all ex-
cited state configurations, however in practice we can
simply add on configurations until a converged result is
achieved. For an M − 1 dimensional bath, an excited
state is comprised of the product of M −1 single particle

harmonic oscillator functions,
∏M
l=2 |χ(l)〉, with different

permutations of this product yielding different configu-
rations. As the coupling of system and bath modes is
proportional to Q̂2 and all bath modes are initially in
the ground state, only even excitations are involved. The
size of the bath basis can be reduced further by exploiting
the effective indistinguishability of the bath modes. The
amplitudes of the harmonic oscillator excited state con-
figurations, which correspond to similar vibrational exci-
tations but differ only by the bath modes involved, will be
identical for a given excited state. This means that con-
figurations corresponding to the same excited state can
be grouped together and associated with a single am-
plitude. This simplification reflects the permutational
symmetry of the Hamiltonian in (22), as mentioned in
Sec. III B. For example, if we include all even excitations
up to a total quanta of 8, as used in the fully converged
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benchmark result for Hamiltonian (22), then the bath
basis functions are:

|ψb
1 〉 = |0000 . . . 0000〉

|ψb
2 〉 = (|2000 . . . 0000〉 + · · · + |0000 . . . 0002〉)

× 1/
√
M − 1

|ψb
3 〉 = (|4000 . . . 0000〉 + · · · + |0000 . . . 0004〉)

× 1/
√
M − 1

|ψb
4 〉 = (|2200 . . . 0000〉 + · · · + |0000 . . . 0022〉)

×
√

2!/
√

(M − 1)(M − 2)

|ψb
5 〉 = (|6000 . . . 0000〉 + · · · + |0000 . . . 0006〉)

× 1/
√
M − 1

|ψb
6 〉 = (|4200 . . . 0000〉 + · · · + |0000 . . . 0024〉)

× 1/
√

(M − 1)(M − 2)

|ψb
7 〉 = (|2220 . . . 0000〉 + · · · + |0000 . . . 0222〉)

×
√

3!/
√

(M − 1)(M − 2)(M − 3)

|ψb
8 〉 = (|8000 . . . 0000〉 + · · · + |0000 . . . 0008〉)

× 1/
√
M − 1

|ψb
9 〉 = (|6200 . . . 0000〉 + · · · + |0000 . . . 0026〉)

× 1/
√

(M − 1)(M − 2)

|ψb
10〉 = (|4400 . . . 0000〉 + · · · + |0000 . . . 0044〉)

×
√

2!/
√

(M − 1)(M − 2)

|ψb
11〉 = (|4220 . . . 0000〉 + · · · + |0000 . . . 0224〉)

×
√

2!/
√

(M − 1)(M − 2)(M − 3)

|ψb
12〉 = (|2222 . . . 0000〉 + · · · + |0000 . . . 2222〉)

×
√

4!/
√

(M − 1)(M − 2)(M − 3)(M − 4)

(B4)

with relevant normalisation factors included. The square
of the normalisation factors is simply equal to the number
of configurations grouped; in this case there are 8855 bath
configurations governed by only 12 distinct amplitudes.

The basis functions for the system are those of a rect-
angular box

〈q(1)|ψs
n〉 =

√

2

L
sin
(nπ

L
(q(1) − qbox)

)

, (B5)

with L being the size of the box and qbox its left hand
coordinate. Values of L = 12 and qbox = −6 are used
to enable a large enough area of coordiante space to be
covered.

Now the basis functions have been defined, the matrix
elements of the Hamiltonian may be evaluated. Firstly,

the bath elements

〈ψb
i |

P̂2

2
+

Q̂2

2
|ψb
j 〉 = δij

(

Ei +
M − 1

2

)

(B6)

are simply the harmonic oscillator eigenvalues for the ex-
cited states. The value of Ei is the sum of quanta in a
particular excited state Ei =

∑M
l=2 ǫ

(l)
i , where ǫ

(l)
i is the

number of quanta in one mode. Secondly, the system
elements

〈ψs
m| p̂

(1)2

2
− q̂(1)

2

2
+
q̂(1)

4

16η
|ψs
n〉 =

n2π2

2L2
δmn +

2

L

qbox+L
∫

qbox

sin
(mπ

L
(q(1) − qbox)

)

× sin
(nπ

L
(q(1) − qbox)

)

(

q̂(1)
4

16η
− q̂(1)

2

2

)

dq(1),

(B7)

are the particle in a box energy levels, plus an additional
potential term. Finally, the system-bath interaction ele-
ments are given as

〈ψb
i |Q̂2|ψb

j 〉 =

=



















































































































Aij
2

√

(ǫ
(l)
i + 2)(ǫ

(l)
i + 1) if ǫ

(l)
i = ǫ

(l)
j − 2

in only one mode and

ǫ
(l)
i = ǫ

(l)
j

in all other modes
Aij
2

√

ǫ
(l)
i (ǫ

(l)
i − 1) if ǫ

(l)
i = ǫ

(l)
j + 2

in only one mode and

ǫ
(l)
i = ǫ

(l)
j

in all other modes
M
∑

l=2

ǫ
(l)
i +

M − 1

2
if ǫ

(l)
i = ǫ

(l)
j

in all modes

0 if states differ by more
than two quanta in one
mode, or two quanta in
more than one mode

(B8)

〈ψs
m|q̂(1)|ψs

n〉 =
2

L

qbox+L
∫

qbox

sin
(mπ

L
(q(1) − qbox)

)

× sin
(nπ

L
(q(1) − qbox)

)

q(1) dq(1) ,

(B9)

where Aij is a constant that depends upon the normalisa-
tion factors and the number of configurations that differ
by only two quanta in one mode between states. For clar-
ity, the 〈ψb

i |Q̂2|ψb
j 〉 matrix elements evaluated using the

bath basis functions of Eq. (B4) are
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|ψb
1 〉 |ψb

2 〉 |ψb
3 〉 |ψb

4 〉 |ψb
5 〉 |ψb

6 〉 |ψb
7 〉 |ψb

8 〉 |ψb
9 〉 |ψb

10〉 |ψb
11〉 |ψb

12〉

〈ψb
1 | M−1

2

√
2(M−1)

2 0 0 0 0 0 0 0 0 0 0

〈ψb
2 |

√
2(M−1)

2 2 + M−1
2

√
3

√
M − 2 0 0 0 0 0 0 0 0

〈ψb
3 | 0

√
3 4 + M−1

2 0 1
2

√
30

√
2(M−2)

2 0 0 0 0 0 0

〈ψb
4 | 0

√
M − 2 0 4 + M−1

2 0
√

6

√
6(M−3)

2 0 0 0 0 0

〈ψb
5 | 0 0 1

2

√
30 0 6 + M−1

2 0 0 1
2

√
56

√
2(M−2)

2 0 0 0

〈ψb
6 | 0 0

√
2(M−2)

2

√
6 0 6 + M−1

2 0 0 1
2

√
30 1

2

√
24

√
M − 3 0

〈ψb
7 | 0 0 0

√
6(M−3)

2 0 0 6 + M−1
2 0 0 0 1

2

√
36

√

2(M − 4)

〈ψb
8 | 0 0 0 0 1

2

√
56 0 0 8 + M−1

2 0 0 0 0

〈ψb
9 | 0 0 0 0

√
2(M−2)

2
1
2

√
30 0 0 8 + M−1

2 0 0 0

〈ψb
10| 0 0 0 0 0 1

2

√
24 0 0 0 8 + M−1

2 0 0

〈ψb
11| 0 0 0 0 0

√
M − 3 1

2

√
36 0 0 0 8 + M−1

2 0

〈ψb
12| 0 0 0 0 0 0

√

2(M − 4) 0 0 0 0 8 + M−1
2



























































(B10)

The initial amplitudes are calculated via projection onto
the initial wavepacket, with all modes in the ground vi-
brational level at t = 0

cim(0) = 〈ψb
i ψ

s
m|Ψ(0)〉 = δ1m〈ψs

m|Ψ(0)〉

=

√

2

L

qbox+L
∫

qbox

sin
(mπ

L
(q(1) − qbox)

)

×
(

1

π

)
1
4

exp

(

−1

2

(

q(1) − q(1)(0)
)2
)

dq(1).

(B11)

The CCF is calculated via the overlap between the wave-
function and the mirror image of the initial state,

CCF(t) = 〈Ψ̄(0)|Ψ(t)〉

=

Nbth
∑

i,j=1

Nsys
∑

m,n=1

c̄∗im(0)cjn(t)〈ψb
i ψ

s
m|ψb

j ψ
s
n〉

=

Nbth
∑

i,j=1

Nsys
∑

m,n=1

c̄∗im(0)cjn(t)δijδmn

=

Nbth
∑

j=1

Nsys
∑

n=1

c̄∗jn(0)cjn(t).

(B12)

where the mirror image of the initial state has been ex-
pressed as the basis set expansion with coefficients c̄jn,
and the orthogonality of the basis functions has been
utilised.

The benchmark is converged with respect to Nbth and
Nsys, with fully converged values of Nbth = 12 (number
of basis functions to give even harmonic oscillator excited
states up to a quanta of 8) and Nsys = 50.
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