113 research outputs found

    Pathway-Dependent Post-assembly Modification of an Anthracene-Edged MII4L6 Tetrahedron

    Get PDF
    FeII4L6 tetrahedral cage 1 undergoes post-assembly modification (PAM) via a Diels–Alder cycloaddition of the anthracene panels of the cage with tetracyanoethylene (TCNE). The modified cage 2 possesses an enclosed cavity suitable for encapsulation of the fullerene C60, whereas original cage 1 forms a unique covalent adduct through a Diels–Alder cycloaddition of three of its anthracene ligands with C60. This adduct undergoes further PAM via reaction of the remaining three ligands with TCNE, enabling the isolation of two distinct products depending on the order of addition of C60 and TCNE. Modified cage 2 was also able to bind an anionic guest, [Co(C2B9H11)2]−, which was not encapsulated by the original cage, demonstrating the potential of PAM for tuning the binding properties of supramolecular hosts

    Improved Acid Resistance of a Metal-Organic Cage Enables Cargo Release and Exchange between Hosts.

    Get PDF
    The use of di(2-pyridyl)ketone in subcomponent self-assembly is introduced. When combined with a flexible triamine and zinc bis(trifluoromethanesulfonyl)imide, this ketone formed a new Zn4 L4 tetrahedron 1 bearing twelve uncoordinated pyridyl units around its metal-ion vertices. The acid stability of 1 was found to be greater than that of the analogous tetrahedron 2 built from 2-formylpyridine. Intriguingly, the peripheral presence of additional pyridine rings in 1 resulted in distinct guest binding behavior from that of 2, affecting guest scope as well as binding affinities. The different stabilities and guest affinities of capsules 1 and 2 enabled the design of systems whereby different cargoes could be moved between cages using acid and base as chemical stimuli.European Research Council (695009), UK Engineering and Physical Sciences Research Council (EPSRC EP/P027067/1

    Subcomponent Flexibility Enables Conversion between D4-Symmetric Cd(II)8L8 and T-Symmetric Cd(II)4L4 Assemblies.

    Get PDF
    A flexible tris-formylpyridine subcomponent A was observed to produce three distinct products following Cd(II)-templated self-assembly with different anilines. Two of the products were Cd(II)4L4 tetrahedra, one with ligands puckered inward, and the other outward. The third product was a Cd(II)8L8 structure having all mer stereochemistry, contrasting with the fac stereochemistry of the tetrahedra. These three complexes were observed to coexist in solution. The equilibrium between them could be influenced through guest binding and specific interactions between aniline subcomponents, allowing a selected one of the three to predominate under defined conditions.This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC EP/M008258/1). The authors thank the Department of Chemistry NMR facility, University of Cambridge, and the EPSRC UK National Mass Spectrometry Facility at Swansea University. J. M. acknowledges postdoctoral fellowship support from Fundación Ramón Areces.This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/jacs.5b1295

    Covalent Post-assembly Modification Triggers Multiple Structural Transformations of a Tetrazine-Edged Fe4L6 Tetrahedron

    Get PDF
    Covalent post-assembly modification (PAM) reactions are useful synthetic tools for functionalizing and stabilizing self-assembled metal-organic complexes. Recently, PAM reactions have also been explored as stimuli for triggering supramolecular structural transformations. Herein we demonstrate the use of inverse electron-demand Diels-Alder (IEDDA) PAM reactions to induce supramolecular structural transformations starting from a tetrazine-edged FeII4L6 tetrahedral precursor. Following PAM, this tetrahedron rearranged to form three different architectures depending on the addition of other stimuli: an electron-rich aniline or a templating anion. By tracing the stimulus-response relationships within the system, we deciphered a network of transformations that mapped different combinations of stimuli onto specific transformation products. Given the many functions being developed for self-assembled three-dimensional architectures, this newly established ability to control the interconversion between structures using combinations of different stimulus types may serve as the basis for switching the functions expressed within a system.D.A.R. acknowledges the Gates Cambridge Trust. B.S.P. acknowledges the Royal Commission for the Exhibition of 1851 Fellowship and Corpus Christi College, Cambridge. This work was supported by the UK Engineering and Physical Sciences Research Council (EP/M01083X/1)

    Subtle Ligand Modification Inverts Guest Binding Hierarchy in M(II)8L6 Supramolecular Cubes.

    Get PDF
    Zinc(II), a dimolybdenum(II) paddlewheel tetramine A, and 2-formylpyridine self-assembled to generate a cubic Zn(II)8(L(A))6 assembly. The paddlewheel faces of this assembly exhibited two distinct conformations, whereas the analogous Fe(II)8(L(A))6 framework displayed no such perturbation to its structure. This variation in behavior is attributed to the subtle difference in ligand rotational freedom between the Zn(II)- and Fe(II)-cornered cubes. The incorporation of a fluorinated Mo(II)2 paddlewheel, B, into analogous Zn(II)8(L(B))6 and Fe(II)8(L(B))6 structures resulted in changes to the rotational dynamics of the ligands. These differing dynamics perturbed the energies of the frontier orbitals of these structures, as determined through spectroscopic and electrochemical methods. The result of these perturbations was an inversion of the halide binding preference of the Zn(II)8(L(B))6 host as compared to its Zn(II)8(L(A))6 congener, whereas the Fe(II)8(L(B))6 host maintained a similar binding hierarchy to Fe(II)8(L(A))6.Seventh Framework ProgrammeThis is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/jacs.6b0385

    Tetramine Aspect Ratio and Flexibility Determine Framework Symmetry for Zn8L6 Self-Assembled Structures

    Get PDF
    We derive design principles for the assembly of rectangular tetramines into Zn8L6 pseudo-cubic coordination cages. Because of the rectangular, as opposed to square, geometry of the ligand panels, and the possibility of either Delta or ? handedness of each metal center at the eight corners of the pseudo-cube, many different cage diastereomers are possible. Each of the six tetra-aniline subcomponents investigated in this work assembled with zinc(II) and 2-formylpyridine in acetonitrile into a single Zn8L6 pseudo-cube diastereomer, however. Each product corresponded to one of four diastereomeric configurations, with T, T-h, S-6 or D-3 symmetry. The preferred diastereomer for a given tetra-aniline subcomponent was shown to be dependent on its aspect ratio and conformational flexibility. Analysis of computationally modeled individual faces or whole pseudo-cubes provided insight as to why the observed diastereomers were favored

    Selective Separation of Polyaromatic Hydrocarbons by Phase Transfer of Coordination Cages.

    Get PDF
    Here we report a new supramolecular strategy for the selective separation of specific polycyclic aromatic hydrocarbons (PAHs) from mixtures. The use of a triethylene glycol-functionalized formylpyridine subcomponent allowed the construction of an FeII4L4 tetrahedron 1 that was capable of transferring between water and nitromethane layers, driven by anion metathesis. Cage 1 selectively encapsulated coronene from among a mixture of eight different types of PAHs in nitromethane, bringing it into a new nitromethane phase by transiting through an intermediate water phase. The bound coronene was released from 1 upon addition of benzene, and both the cage and the purified coronene could be separated via further phase separation
    corecore