35 research outputs found
Clustered Single Cellulosic Fiber Dissolution Kinetics and Mechanisms through Optical Microscopy under Limited Dissolving Conditions
Herein, we describe a new method of assessing the kinetics of dissolution of single fibers by dissolution under limited dissolving conditions. The dissolution is followed by optical microscopy under limited dissolving conditions. Videos of the dissolution were processed in Image) to yield kinetics for dissolution, based on the disappearance of pixels associated with intact fibers. Data processing was performed using the Python language, utilizing available scientific libraries. The methods of processing the data include clustering of the single fiber data, identifying clusters associated with different fiber types, producing average dissolution traces and also extraction of practical parameters, such as, time taken to dissolve 25, SO, 75, 95, and 99.5% of the clustered fibers. In addition to these simple parameters, exponential fitting was also performed yielding rate constants for fiber dissolution. Fits for sample and cluster averages were variable, although demonstrating first-order kinetics for dissolution overall. To illustrate this process, two reference pulps (a bleached softwood kraft pulp and a bleached hardwood pre hydrolysis kraft pulp) and their cellulase-treated versions were analyzed. As expected, differences in the kinetics and dissolution mechanisms between these samples were observed. Our initial interpretations are presented, based on the combined mechanistic observations and single fiber dissolution kinetics for these different samples. While the dissolution mechanisms observed were similar to those published previously, the more direct link of mechanistic information with the kinetics improve our understanding of cell wall structure and pre-treatments, toward improved processability.Peer reviewe
Screening of glycoside hydrolases and ionic liquids for fibre modification
BACKGROUNDThis study elaborates the possibility to apply combined ionic liquid (IL) and enzyme treatments for pulp fibre modification. The approach involves swelling of fibre surfaces with IL followed by enzymatic modification of the disrupted fibre surface using carbohydrate active enzymes. RESULTSThe capacity of seven cellulose-dissolving or cellulose-swelling ionic liquids to swell pulp fibres was compared. In addition, thirteen cellulases and five xylanases were screened for their IL tolerance, which determines their applicability in combined or sequential IL-enzyme treatments of fibres. Among the studied ionic liquids, 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DMP) and 1,3-dimethylimidazolium dimethylphosphate ([DMIM]DMP) had the strongest effect on fibre swelling. These solvents were also found to be the least inactivating for the studied enzymes. CONCLUSIONEnzyme compatibility and cellulose-dissolving capability are not two conflicting properties of an ionic liquid. (c) 2017 Society of Chemical IndustryPeer reviewe
Reversibelt syrebindande organometalliska komplex
To porphyrins structurally related organometallic complexes, which bind oxygen reversibly, have been used in oxygen enriching processes either as actively oxygen binding groups in oxygen enriching membranes, or as mobile oxygen carriers in solution.
The complexes of interest for this work are metalloporphyrins, -porphyrazines and -phthalocyanines.
In the literature survey biological oxygen enriching systems are briefly discussed, as well as artificial systems where oxygen is enriched by mobile oxygen carriers or by oxygen enriching membranes.
Metal complexes of porphyrins, porphyrazines and phthalocyanines are dealt with as potential oxygen carriers.
Their synthesis, and especially their solubility and aggregation is discussed, since they are important properties to be tuned in order to maximize the oxygen transport capability in solution.
The metallophthalocyanines were found to be the easiest to synthesize and the work is concentrated on them.
The synthesis of metallophthalocyanines as well as methods for introducing substituents on them is reviewed in detail.
Cobaltphthalocyanines have been found to be among the most suitable for oxygen transport, but the presence of the ferromagnetic Co(II) ion makes NMR analysis impossible.
Therefore, the analysis and caracterization of phthalocyanines are discussed too.
In the experimental part, the microwave assisted synthesis of a tetra-tert-butyl and a tetrafluoro substituted cobaltphthalocyanine is explored with two different methods, but with poor product quality.
In the following experiments two water soluble cobalt-phthalocyanines are synthesized successfully, and they are characterized by IR, UV-Vis and mass spectroscopy.
The analysis clearly indicates that the complexes dimerize in water, but exist as monomers in methanol solution.
The water solubility is due to charged substituents: the first phthalocyanine is substituted with four by methylene quaternized pyridyloxy groups; the second phthalocyanine is substituted with four isophthalate phenoxy groups.
The phthalocyanines were synthesized in refluxing pentanol with basic catalysis out of the corresponding phthalonitrile and metal salt.
The phthalonitrile was formed by nucleophilic aromatic nitro replacement
Selluloosan entsymaattinen hydrolyysi vesipitoisissa ioninesteissÀ
Total enzymatic hydrolysis of the polysaccharides in lignocellulosic biomass to monosaccharides is currently a focus research area. The monosaccharides obtained from lignocellulose hydrolysis can be used for the production of platform chemicals and biofuels, most notably ethanol. One major challenge in the commercialization of lignocellulosic ethanol production is the recalcitrance of lignocellulosics towards enzymatic hydrolysis, necessitating efficient pretreatment of the lignocellulosic feedstock. Certain ionic liquids (ILs, salts with melting points below 100 °C) dissolve cellulose and even lignocellulosic biomass and are as such interesting candidates for pretreatment technology. However, cellulose-dissolving ILs have been found to severely inactivate the hydrolytic enzymes (cellulases) employed in cellulose hydrolysis. This work focuses on elucidating how certain ILs affect the action of cellulases in cellulose hydrolysis. The main emphasis was on the action of purified monocomponent Trichoderma reesei cellulases, but some commercial cellulase preparations were also studied in IL matrices.
Hydrolysis experiments were made in solutions containing up to 90% of the two cellulose-dissolving ILs 1-ethyl-3-methylimidazolium acetate ([EMIM]AcO) and 1,3-dimethylimidazolium dimethylphosphate ([DMIM]DMP). The presence of increasing amounts of IL led to decreasing yields of solubilised saccharides in enzymatic hydrolysis. Depending on the IL and cellulase, no soluble saccharides were released in hydrolysis matrices containing over 40â50% IL. There were clear differences in the severity of the effects of different cellulose-dissolving ILs on cellulase action. [EMIM]AcO was generally more harmful for cellulase action than [DMIM]DMP. Pure [EMIM]AcO completely inactivated T. reesei endoglucanase in 4 h in residual activity measurements, whereas pure [DMIM]DMP supported considerable cellulase activity for at least three days. These results were confirmed by time curves of microcrystalline cellulose (MCC) hydrolysis in matrices containing the two ILs. Cellulose-dissolving ILs based on carboxylate salts of the organic superbases 1,1,3,3-tetramethylguanidine (TMG) and 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) have recently become available. These compounds are distillable under relatively mild conditions and are thus recyclable. However, these ILs were found to be at least as harmful for cellulase action as the studied imidazolium-based ILs and did thus not offer any benefits in terms of enzyme compatibility. T. reesei endoglucanases were unable to reduce the molecular weight of MCC in buffer or in any aqueous matrix containing IL, except in 90% (v/v) [DMIM]DMP in which the MCC was partially dissolved.
Cellulose-dissolving ILs were found to be basic in aqueous solution. According to the results in this work, the pH increase caused by IL basicity was not the main reason for the observed cellulase inactivation. Cellulases with confirmed activity at high pH did not perform better than acidic or neutral cellulases in IL solutions. Some indications were however obtained that cellulase thermostability may be associated with better activity in cellulose-dissolving ILs.
The studied ILs were found to have very detrimental effects on saccharide analytics. A capillary electrophoresis (CE) method was developed for the analysis of mono- and oligosaccharides in matrices containing ILs. With this CE method, the yields and product distribution of cello-oligomers produced in the hydrolysis experiments could be determined. It was found that the presence of ILs shifted the product distribution to larger cello-oligomers for some cellulases. The CE method was also used to monitor the hydrolysis of cello-oligomers with Aspergillus niger ÎČ-glucosidase in IL matrices. This ÎČ-glucosidase was found to be very IL sensitive.
ILs were found to affect the cellulose binding of T. reesei cellulases. The cellulase binding to MCC in solutions with [DMIM]DMP and [EMIM]AcO was studied with radiolabeled T. reesei Cel5A (endoglucanase II) and Cel7A (cellobiohydrolase I) and their respective core domains. Cel7A was able to bind to MCC with its core domain, whereas it was shown that Cel5A was very dependent on its CBM for efficient substrate binding. High cellulose binding affinity was not necessary for all the cellulases in order for them to be hydrolytically active. [EMIM]AcO interfered more with cellulase substrate binding than [DMIM]DMP. The binding ability of the T. reesei carbohydrate-binding modules (CBMs) was very IL sensitive.Enzymatisk totalhydrolys av lignocellulosans polysackarider till monosackarider Àr för tillfÀllet ett mycket aktivt forskningsomrÄde. De sÄlunda producerade monosackariderna kan anvÀndas som rÄvara vid tillverkningen av plattformkemikalier och biobrÀnslen, av vilka sÀrskilt kan nÀmnas etanol. En av de största utmaningarna i kommersialiseringen av etanoltillverkning frÄn lignocellulosa Àr lignocellulosans motstÄndskraft mot enzymatisk hydrolys. DÀrför behövs effektiva förbehandlingsmetoder dÄ lignocellulosan anvÀnds som rÄvara. Vissa jonvÀtskor (definierade som salt med smÀltpunkt under 100 °C) löser cellulosa och till och med fullstÀndig lignocellulosa. JonvÀtskorna utgör sÄlunda ett intressant alternativ som förbehandlingsteknologi för lignocellulosa. JonvÀtskorna har emellertid i hög grad konstaterats inaktivera de hydrolytiska enzymer, cellulaser, som anvÀnds i cellulosahydrolys. Detta arbete har haft som mÄlsÀttning att klargöra hur cellulosalösande jonvÀtskor pÄverkar cellulasernas funktion i cellulosahydrolys. I första hand undersöktes hur funktionen hos cellulaser renade till enkomponentpreparat frÄn Trichoderma reesei, men ocksÄ hos kommersiella cellulaspreparat, pÄverkades i vissa jonvÀtskelösningar.
Hydrolysexperimenten utfördes i lösningar med upp till 90 % jonvĂ€tska (1-etyl-3-metylimidazolium acetat ([EMIM]AcO) eller 1,3-dimetylimidazolium dimetylfosfat ([DMIM]DMP)). En ökande mĂ€ngd jonvĂ€tska ledde till avtagande hydrolysutbyten i form av lösliga sackarider i enzymatisk hydrolys. Beroende pĂ„ kombinationen av jonvĂ€tska och cellulas observerades ingen tillkomst av lösliga sackarider nĂ€r jonvĂ€tskekoncentrationen steg över 40â50 %. De olika jonvĂ€tskorna var i olika utstrĂ€ckning skadliga för cellulasernas funktion. [EMIM]AcO var i allmĂ€nhet mer skadlig Ă€n [DMIM]DMP för cellulasernas funktion. Ren [EMIM]AcO inaktiverade T. reesei endoglukanas fullstĂ€ndigt pĂ„ mindre Ă€n 4 h, medan betydande restaktiviteter mĂ€ttes efter inkubation i [DMIM]DMP under Ă„tminstone tre dygn. Detta resultat understöddes av hydrolyskurvorna nĂ€r mikrokristallin cellulosa (microcrystalline cellulose, MCC) hydrolyserades i lösningar med dessa tvĂ„ jonvĂ€tskor. Cellulosalösande jonvĂ€tskor som bestĂ„r av karboxylater av de organiska superbaserna 1,1,3,3-tetrametylguanidin (TMG) och 1,5-diazabicyklo[4.3.0]non-5-en (DBN) har nyligen blivit tillgĂ€ngliga. Dessa jonvĂ€tskor Ă€r speciellt intressanta eftersom de Ă€r destillerbara under relativt milda förhĂ„llanden och sĂ„lunda Ă€r Ă„tervinningsbara. I hydrolysexperimenten konstaterades dessa jonvĂ€tskor dock vara Ă„tminstone lika skadliga för cellulasernas funktion som de imidazoliumbaserade jonvĂ€tskorna, sĂ„ dessa jonvĂ€tskor medförde ingen nytta i form av ökad enzymkompatibilitet. T. reeseis endoglukanaser kunde inte reducera MCC:s molmassa i buffertlösning eller i nĂ„gon jonvĂ€tskelösning, förutom i 90 % (v/v) [DMIM]DMP, vari MCC partiellt löste sig.
JonvÀtskor som löser cellulosa befanns vara basiska i vattenlösning. Enligt resultaten i detta arbete skulle det stigande pH-vÀrdet, som förosakades av de cellulosalösande jonvÀtskornas basiskhet, inte vara en av huvudorsakerna för den observerade inaktiveringen hos cellulaserna. Cellulaser med aktivitet i höga pH-vÀrden presterade inte bÀttre i jonvÀtskelösningar Àn sura eller neutrala cellulaser. DÀremot observerades det att cellulaser med ökande termostabilitet verkade bevara sin förmÄga att katalysera cellulosahydrolys i jonvÀtskelösningar bÀttre, Àn cellulaser som Àr temperaturkÀnsliga.
De studerade jonvĂ€tskorna konstaterades vara mycket skadliga för mĂ„nga av de vanliga metoderna som anvĂ€nds i kolhydratanalytik. En kapillĂ€relektroforesmetod utvecklades för att analysera mono- och oligosackarider i jonvĂ€tskelösningar. Med den hĂ€r analysmetoden kunde bĂ„de hydrolysutbytena och produktdistributionen av lösliga cello-oligomerer bestĂ€mmas i jonvĂ€tskelösningar. För endel cellulaser ledde nĂ€rvaron av jonvĂ€tska under hydrolysen till att produktdistributionen skiftades mot lĂ€ngre oligomerer, jĂ€mfört med situationen i optimumförhĂ„llanden. KapillĂ€relektroforesmetoden anvĂ€ndes ocksĂ„ för att följa med hur Aspergillus nigers ÎČ-glukosidas hydrolyserade cello-oligomerer i jonvĂ€tskelösningar. Detta ÎČ-glukosidas konstaterades vara mycket kĂ€nsligt för nĂ€rvaron av jonvĂ€tska.
JonvÀtskor konstaterades pÄverka cellulosabindandet hos T. reeseis cellulaser. T. reesei Cel5A (endoglukanas II), Cel7A (cellobiohydrolas I) och deras respektive katalytiska domÀner mÀrktes med radioaktivt tritium och dessa cellulasers förmÄga att binda till MCC studerades i lösningar innehÄllande [DMIM]DMP och [EMIM]AcO. Cel7A kunde binda sig till MCC direkt via sin katalytiska domÀn, medan det kunde pÄvisas att Cel5A var ytterst beroende av sin kolhydratbindande modul för att binda till cellulosa. En hög grad av bindning till cellulosa var inte nödvÀndig för Cel5A för att hydrolys skulle Àga rum. [EMIM]AcO konstaterades pÄverka cellulasernas bindingsgrad till MCC mer Àn [DMIM]DMP. BindningsförmÄgan hos T. reeseis kolhydratbindande moduler konstaterades vara synnerligen kÀnslig för de studerade jonvÀtskorna.Lignoselluloosan entsymaattista totaalihydrolyysiÀ tutkitaan nykyisin hyvin aktiivisesti. Lignoselluloosassa olevien polysakkaridien hydrolyysistÀ syntyviÀ monosakkarideja voidaan kÀyttÀÀ raaka-aineina kemikaalien, polymeerien ja biopolttoaineiden, erityisesti etanolin, tuotannossa. Iso haaste lignoselluloosapohjaisen etanolituotannon kaupallistamisessa on lignoselluloosan monimutkainen rakenne, joka vaikeuttaa entsymaattista hydrolyysiÀ. Tehokkaiden, lignoselluloosaa avaavien esikÀsittelymenetelmien kehittÀminen on siis tÀrkeÀÀ. Tietyt ioninesteet, jotka mÀÀritellÀÀn suoloiksi, joiden sulamispiste on alle 100 °C, liuottavat selluloosaa ja jopa lignoselluloosaa. Ne ovatkin hyvin mielenkiintoisia kÀytettÀviksi lignoselluloosan esikÀsittelyssÀ. Selluloosaa liuottavien ioninesteiden on kuitenkin todettu inaktivoivan hydrolyyttisiÀ entsyymejÀ, sellulaaseja, joita kÀytetÀÀn selluloosan totaalihydrolyysissÀ. TÀssÀ työssÀ selvitettiin, miten tietyt ioninesteet vaikuttavat sellulaasien toimintaan selluloosan hydrolyysissÀ. TyössÀ tutkittiin pÀÀasiassa Trichoderma reesei -homeen tuottamien ja puhdistettujen sellulaasien sekÀ myös joidenkin kaupallisesti saatavien sellulaasituotteiden toimintaa vesipitoisissa ioninesteliuoksissa.
Hydrolyysikokeita tehtiin selluloosalla vesiliuoksissa, joiden ioninestepitoisuus vaihteli; suurimmillaan se oli 90 % (joko 1-etyyli-3-metyylimidatsoliumi asetaatti ([EMIM]AcO) tai 1,3-dimetyylimidatsoliumi dimetyylifosfaatti ([DMIM]DMP)). Kasvavat ioninestepitoisuudet aiheuttivat hydrolyysisaannon pienenemisen selluloosan entsyymaattisessa hydrolyysissĂ€. Riippuen sellulaasin ja ioninesteen yhdistelmĂ€stĂ€ liukenevia mono- ja oligosakkarideja ei syntynyt lainkaan hydrolyyseissĂ€, joissa oli enemmĂ€n kuin 40â50 % ioninestettĂ€. Selluloosaa liuottavien ioninesteiden vaikutuksessa sellulaasien toimintaan oli selviĂ€ eroja. [EMIM]AcO haittasi enemmĂ€n sellulaasien toimintaa kuin [DMIM]DMP. Puhtaassa [EMIM]AcO:ssa T. reesein endoglukanaasi inaktivoitui tĂ€ysin neljĂ€n tunnin kĂ€sittelyssĂ€ jÀÀnnösaktiivisuusmittauksen perusteella, kun taas aktiivisuus aleni hyvin vĂ€hĂ€n ja hitaasti [DMIM]DMP:ssa kolmen vuorokauden aikana. NĂ€mĂ€ tulokset vastasivat hyvin samojen ioninesteiden vesiliuoksissa tehtyjen mikrokiteisen selluloosan (microcrystalline cellulose, MCC) entsymaattisten hydrolyysien tuloksia. ĂskettĂ€in on kehitetty selluloosaa liuottavia ioninesteitĂ€, jotka perustuvat orgaanisten superemĂ€sten 1,1,3,3-tetrametyyliguanidiinin (TMG) ja 1,5-diatsabisyklo[4.3.0]non-5-eenin (DBN) karboksylaattisuoloihin. NĂ€mĂ€ ioninesteet ovat tislattavia suhteellisen miedoissa olosuhteissa ja nĂ€in ollen kierrĂ€tettĂ€viĂ€. Hydrolyysikokeiden perusteella nĂ€mĂ€ uudet selluloosaa liuottavat ioninesteet eivĂ€t kuitenkaan olleet paremmin yhteensopivia sellulaasien kanssa kuin perinteiset imidatsoliumi-pohjaiset ioninesteet. T. reesein endoglukanaasit eivĂ€t pystyneet vĂ€hentĂ€mÀÀn MCC:n molekyylipainoa puskurissa eivĂ€tkĂ€ missÀÀn muussa ioninestettĂ€ sisĂ€ltĂ€vĂ€ssĂ€ liuoksessa, paitsi 90-prosenttisessa (v/v) [DMIM]DMP:ssa, johon MCC oli osittain liuennut.
Selluloosaa liuottavien ioninesteiden todettiin olevan emÀksisiÀ vesiliuoksessa. TÀmÀn työn tulosten perusteella ioninesteiden aiheuttama pH-arvon nousu ei kuitenkaan ollut sellulaasien inaktivoitumisen pÀÀsyy. Sellulaasin kyky toimia korkeissa pH-arvoissa ei tehnyt sellulaasista tehokkaampaa selluloosan hydrolyysissÀ ioninestematriiseissa. Sen sijaan sellulaasien termostabiilisuus vaikutti johtavan kasvavaan ioninestetoleranssiin.
Tutkittujen ioninesteiden havaittiin olevan hyvin haitallisia hiilihydraattianalytiikkamenetelmille. TyössĂ€ kehitettiin kapillarielektroforeesimenetelmĂ€ mono- ja oligosakkaridien analyysiin ioninestepitoisissa matriiseissa. Hydrolyysien saannot ja liuenneiden oligosakkaridien tuotejakaumat mÀÀriteltiin tĂ€llĂ€ menetelmĂ€llĂ€ ioninestepitoisista hydrolysaateista. Analyysien perusteella havaittiin, ettĂ€ ioninesteiden lĂ€snĂ€olo entsymaattisessa selluloosan hydrolyysissĂ€ sai tuotejakauman siirtymÀÀn pitempiin oligosakkarideihin joillakin sellulaaseilla. ElektroforeesimenetelmÀÀ kĂ€ytettiin myös sello-oligomeerien hydrolyysin seuraamiseen Aspergillus nigerin ÎČ-glukosidaasilla ioninestematriiseissa. TĂ€mĂ€ ÎČ-glukosidaasi havaittiin hyvin ioninesteherkĂ€ksi.
Ioninesteiden havaittiin vaikuttavan T. reesein sellulaasien selluloosaan sitoutumiseen. Sellulaasien sitoutumista MCC:aan tutkittiin radioleimatuilla T. reesei Cel5A:lla (endoglukanaasi II), Cel7A:lla (cellobiohydrolaasi I) ja niiden katalyyttisillÀ domeeneillÀ puskuriliuoksissa [DMIM]DMP:n ja [EMIM]AcO:n lÀsnÀ ollessa. Cel7A pystyi sitoutumaan MCC:aan pelkÀllÀ katalyyttisellÀ domeenillaan, kun taas Cel5A oli hyvin riippuvainen hiilihydraatteja sitovasta modulistaan sitoutuakseen tehokkaasti selluloosaan. Korkea sitoutumisaste ei kuitenkaan ollut tarpeellinen Cel5A:lle, jotta se olisi toiminut selluloosan hydrolyysissÀ. [EMIM]AcO vaikutti [DMIM]DMP:a voimakkaammin sellulaasien selluloosaan sitoutumiseen. Yleisesti tutkittujen ioninesteiden todettiin vaikuttavan herkÀsti T. reesein hiilihydraatteja sitovien moduulien toimintaan