83 research outputs found

    USE OF NET CAGES FOR FISH FARMING IN SWEDISH CONDITIONS

    Get PDF

    Exercise-induced mechanical hypoalgesia in musculotendinous tissues of the lateral elbow

    Get PDF
    The aim of this study was to investigate mechanical sensitivity responses at the lateral elbow to repeated weekly bouts of low load exercise in healthy subjects. Thirteen young men (n = 6) and women participated in 4 weeks of exercise. Arms were randomly allocated to an eccentric-only exercise protocol (ECC: 5 sets of 20 contractions) or to a concentric–eccentric protocol (CON-ECC: 5 sets of 10 eccentric/10 concentric contractions) performed at 30% maximal wrist extension force. Arms were exercised consecutively within each supervised weekly session. Quantitative measures of pressure pain threshold (PPT) recorded at three sites and maximal force for grip and wrist extension were assessed at baseline, and immediately pre/post exercise at each session. Muscle endurance during 100 maximal grip contractions force was assessed at baseline and one week following the final exercise session. Results showed that regardless of protocol, repeated low load exercise resulted in a time-dependent increase in PPT at all sites post exercise Weeks 3 and 4 and persisting at follow up Week 5 (P \u3c 0.02). No significant difference between protocols was evident for any measure. Muscle force and endurance were not significantly augmented compared with baseline. In conclusion mechanical hypoalgesia is induced by repeated low load exercises regardless of exercise mode, and this may prove beneficial if replicated clinically

    Reaction and proton-removal cross sections of 6^6Li, 7^7Be, 10^{10}B, 9,10,11^{9,10,11}C, ^{12N, 13,15^{13,15}O and 17^{17}Ne on Si at 15 to 53 MeV/nucleon

    Full text link
    Excitation functions for total reaction cross sections, σR\sigma_R, were measured for the light, mainly proton-rich nuclei 6^6Li, 7^7Be, 10^{10}B, 9,10,11^{9,10,11}C, 12^{12}N, 13,15^{13,15}O, and 17^{17}Ne incident on a Si telescope at energies between 15 and 53 MeV/nucleon. The telescope served as target, energy degrader and detector. Proton-removal cross sections, σ2p\sigma_{2p} for 17^{17}Ne and σp\sigma_p for most of the other projectiles, were also measured. The strong absorption model reproduces the AA-dependence of σR\sigma_R, but not the detailed structure. Glauber multiple scattering theory and the JLM folding model provided improved descriptions of the measured σR\sigma_R values. rmsrms radii, extracted from the measured σR\sigma_R using the optical limit of Glauber theory, are in good agreement with those obtained from high energy data. One-proton removal reactions are described using an extended Glauber model, incorporating second order noneikonal corrections, realistic single particle densities, and spectroscopic factors from shell model calculations.Comment: 16 pages, 6 figure

    The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules

    Get PDF
    Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take

    High gain, low noise 1550  nm GaAsSb/AlGaAsSb avalanche photodiodes

    Get PDF
    High sensitivity avalanche photodiodes (APDs) operating at eye-safe infrared wavelengths (1400–1650 nm) are essential components in many communications and sensing systems. We report the demonstration of a room temperature, ultrahigh gain ( M = 278 , λ = 1550 n m , V = 69.5 V , T = 296 K ) linear mode APD on an InP substrate using a G a A s 0.5 S b 0.5 / A l 0.85 G a 0.15 A s 0.56 S b 0.44 separate absorption, charge, and multiplication (SACM) heterostructure. This represents ∼ 10 × gain improvement ( M = 278 ) over commercial, state-of-the-art InGaAs/InP-based APDs ( M ∼ 30 ) operating at 1550 nm. The excess noise factor is extremely low ( F &lt; 3 ) at M = 70 , which is even lower than Si APDs. This design gives a quantum efficiency of 5935.3% at maximum gain. This SACM APD also shows an extremely low temperature breakdown sensitivity ( C b d ) of ∼ 11.83 m V / K , which is ∼ 10 × lower than equivalent InGaAs/InP commercial APDs. These major improvements in APD performance are likely to lead to their wide adoption in many photon-starved applications.</jats:p
    corecore