226 research outputs found

    Effects of bovine parathyroid hormone and 1,25-dihydroxyvitamin D3 on the production of prostaglandins by cells derived from human bone

    Get PDF
    AbstractLocal production of prostaglandins by osteoblasts may be important in controlling the bone resorbing activity of some hormones which have receptors on osteoblasts. We have demonstrated that osteoblast-like cells derived from human bone can incorporate [14C]arachidonic acid into phospholipids and synthesise immunoreactive PGE. Parathyroid hormone increases both the release of incorporated arachidonic acid and the synthesis of PGE. This is the first demonstration of modulation of bone cell prostaglandin synthesis by a bone resorbing hormone

    Instabilities of Black Strings and Branes

    Get PDF
    We review recent progress on the instabilities of black strings and branes both for pure Einstein gravity as well as supergravity theories which are relevant for string theory. We focus mainly on Gregory-Laflamme instabilities. In the first part of the review we provide a detailed discussion of the classical gravitational instability of the neutral uniform black string in higher dimensional gravity. The uniform black string is part of a larger phase diagram of Kaluza-Klein black holes which will be discussed thoroughly. This phase diagram exhibits many interesting features including new phases, non-uniqueness and horizon-topology changing transitions. In the second part, we turn to charged black branes in supergravity and show how the Gregory-Laflamme instability of the neutral black string implies via a boost/U-duality map similar instabilities for non- and near-extremal smeared branes in string theory. We also comment on instabilities of D-brane bound states. The connection between classical and thermodynamic stability, known as the correlated stability conjecture, is also reviewed and illustrated with examples. Finally, we examine the holographic implications of the Gregory-Laflamme instability for a number of non-gravitational theories including Yang-Mills theories and Little String Theory.Comment: 119 pages, 16 figures. Invited review for Classical and Quantum Gravit

    A tool for examining the role of the zinc finger myelin transcription factor 1 (Myt1) in neural development: Myt1 knock-in mice

    Get PDF
    The Myt1 family of transcription factors is unique among the many classes of zinc finger proteins in how the zinc-stabilized fingers contact the DNA helix. To examine the function of Myt1 in the developing nervous system, we generated mice in which Myt1 expression was replaced by an enhanced Green Fluorescent Protein fused to a Codon-improved Cre recombinase as a protein reporter. Myt1 knock-in mice die at birth, apparently due to improper innervation of their lungs. Elimination of Myt1 did not significantly affect the number or distribution of neural precursor cells that normally express Myt1 in the embryonic spinal cord. Nor was the general pattern of differentiated neurons altered in the embryonic spinal cord. The Myt1 knock-in mice should provide an important tool for identifying the in vivo targets of Myt1 action and unraveling the role of this structurally distinct zinc finger protein in neural development

    Plasticity of Adult Human Pancreatic Duct Cells by Neurogenin3-Mediated Reprogramming

    Get PDF
    AIMS/HYPOTHESIS: Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. METHODS: The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. RESULTS: Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. CONCLUSIONS/INTERPRETATION: The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes

    Protein phosphatase beta, a putative type-2A protein phosphatase from the human malaria parasite Plasmodium falciparum.

    Get PDF
    Protein phosphatases play a critical role in the regulation of the eukaryotic cell cycle and signal transduction. A putative protein serine/threonine phosphatase gene has been isolated from the human malaria parasite Plasmodium falciparum. The gene has an unusual intron that contains four repeats of 32 nucleotides and displays a high degree of size polymorphism among different strains of P. falciparum. The open reading frame reconstituted by removal of the intron encodes a protein of 466 amino acids with a predicted molecular mass of approximately 53.7 kDa. The encoded protein, termed protein phosphatase beta (PP-beta), is composed of two distinct domains. The C-terminal domain comprises 315 amino acids and exhibits a striking similarity to the catalytic subunits of the type-2A protein phosphatases. Database searches revealed that the catalytic domain has the highest similarity to Schizosaccharomyces pombe Ppa1 (58% identity and 73% similarity). However, it contains a hydrophilic insert consisting of five amino acids. The N-terminal domain comprises 151 amino acid residues and exhibits several striking features, including high levels of charged amino acids and asparagine, and multiple consensus phosphorylation sites for a number of protein kinases. An overall structural comparison of PP-beta with other members of the protein phosphatase 2A group revealed that PP-beta is more closely related to Saccharomyces cerevisiae PPH22. Southern blots of genomic DNA digests and chromosomal separations showed that PP-beta is a single-copy gene and is located on chromosome 9. A 2800-nucleotide transcript of this gene is expressed specifically in the sexual erythrocytic stage (gametocytes). The results indicate that PP-beta may be involved in sexual stage development

    Pdx1 Is Post-Translationally Modified In vivo and Serine 61 Is the Principal Site of Phosphorylation

    Get PDF
    Maintaining sufficient levels of Pdx1 activity is a prerequisite for proper regulation of blood glucose homeostasis and beta cell function. Mice that are haploinsufficient for Pdx1 display impaired glucose tolerance and lack the ability to increase beta cell mass in response to decreased insulin signaling. Several studies have shown that post-translational modifications are regulating Pdx1 activity through intracellular localization and binding to co-factors. Understanding the signaling cues converging on Pdx1 and modulating its activity is therefore an attractive approach in diabetes treatment. We employed a novel technique called Nanofluidic Proteomic Immunoassay to characterize the post-translational profile of Pdx1. Following isoelectric focusing in nano-capillaries, this technology relies on a pan specific antibody for detection and it therefore allows the relative abundance of differently charged protein species to be examined simultaneously. In all eukaryotic cells tested we find that the Pdx1 protein separates into four distinct peaks whereas Pdx1 protein from bacteria only produces one peak. Of the four peaks in eukaryotic cells we correlate one of them to a phosphorylation Using alanine scanning and mass spectrometry we map this phosphorylation to serine 61 in both Min6 cells and in exogenous Pdx1 over-expressed in HEK293 cells. A single phosphorylation is also present in cultured islets but it remains unaffected by changes in glucose levels. It is present during embryogenesis but is not required for pancreas development

    RAD59 and RAD1 cooperate in translocation formation by single-strand annealing in Saccharomyces cerevisiae

    Get PDF
    Studies in the budding yeast, Saccharomyces cerevisiae, have demonstrated that a substantial fraction of double-strand break repair following acute radiation exposure involves homologous recombination between repetitive genomic elements. We have previously described an assay in S. cerevisiae that allows us to model how repair of multiple breaks leads to the formation of chromosomal translocations by single-strand annealing (SSA) and found that Rad59, a paralog of the single-stranded DNA annealing protein Rad52, is critically important in this process. We have constructed several rad59 missense alleles to study its function more closely. Characterization of these mutants revealed proportional defects in both translocation formation and spontaneous direct-repeat recombination, which is also thought to occur by SSA. Combining the rad59 missense alleles with a null allele of RAD1, which encodes a subunit of a nuclease required for the removal of non-homologous tails from annealed intermediates, substantially suppressed the low frequency of translocations observed in rad1-null single mutants. These data suggest that at least one role of Rad59 in translocation formation by SSA is supporting the machinery required for cleavage of non-homologous tails

    Fusion rules and boundary conditions in the c=0 triplet model

    Full text link
    The logarithmic triplet model W_2,3 at c=0 is studied. In particular, we determine the fusion rules of the irreducible representations from first principles, and show that there exists a finite set of representations, including all irreducible representations, that closes under fusion. With the help of these results we then investigate the possible boundary conditions of the W_2,3 theory. Unlike the familiar Cardy case where there is a consistent boundary condition for every representation of the chiral algebra, we find that for W_2,3 only a subset of representations gives rise to consistent boundary conditions. These then have boundary spectra with non-degenerate two-point correlators.Comment: 50 pages; v2: changed formulation in section 1.2.1 and corrected typos, version to appear in J. Phys.

    Consensus statement from the 2014 International Microdialysis Forum.

    Get PDF
    Microdialysis enables the chemistry of the extracellular interstitial space to be monitored. Use of this technique in patients with acute brain injury has increased our understanding of the pathophysiology of several acute neurological disorders. In 2004, a consensus document on the clinical application of cerebral microdialysis was published. Since then, there have been significant advances in the clinical use of microdialysis in neurocritical care. The objective of this review is to report on the International Microdialysis Forum held in Cambridge, UK, in April 2014 and to produce a revised and updated consensus statement about its clinical use including technique, data interpretation, relationship with outcome, role in guiding therapy in neurocritical care and research applications.We gratefully acknowledge financial support for participants as follows: P.J.H. - National Institute for Health Research (NIHR) Professorship and the NIHR Biomedical Research Centre, Cambridge; I.J. – Medical Research Council (G1002277 ID 98489); A. H. - Medical Research Council, Royal College of Surgeons of England; K.L.H.C. - NIHR Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme); M.G.B. - Wellcome Trust Dept Health Healthcare Innovation Challenge Fund (HICF-0510-080); L. H. - The Swedish Research Council, VINNOVA and Uppsala Berzelii Technology Centre for Neurodiagnostics; S. M. - Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico; D.K.M. - NIHR Senior Investigator Award to D.K.M., NIHR Cambridge Biomedical Research Centre (Neuroscience Theme), FP7 Program of the European Union; M. O. - Swiss National Science Foundation and the Novartis Foundation for Biomedical Research; J.S. - Fondo de Investigación Sanitaria (Instituto de Salud Carlos III) (PI11/00700) co-financed by the European Regional Development; M.S. – NIHR University College London Hospitals Biomedical Research Centre; N. S. - Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00134-015-3930-

    The Pochonia chlamydosporia Serine Protease Gene vcp1 Is Subject to Regulation by Carbon, Nitrogen and pH: Implications for Nematode Biocontrol

    Get PDF
    The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers) may enhance biocontrol potential in some circumstances
    corecore