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Introduction

Microdialysis is unique in that it allows the chemistry of
the extracellular interstitial fluid to be monitored con-
tinuously. Since its conception by Ungerstedt and
Pycock in the 1970s [1] and its introduction into clinical
practice approximately 25 years ago [2], it has been
applied to study the tissue chemistry of several human
organs. Most experience has been acquired in the setting
of neurocritical care. In this arena, microdialysis has
been applied to patients with several conditions, and in
particular traumatic brain injury (TBI) and subarachnoid
hemorrhage (SAH). There is no doubt that this tech-
nique has increased our understanding of the
pathophysiology of these disease processes [3]. Fur-
thermore, microdialysis has evolved into a clinical tool
for the management of patients on an individual inten-
tion-to-treat basis.

In neurocritical care, microdialysis data is typically
collected together with intracranial pressure (ICP) [al-
lowing calculation of cerebral perfusion pressure (CPP)]
and brain tissue oxygen tension (PbtO2). Microdialysis
complements these techniques by providing additional
information on substrate delivery and metabolism at the
cellular level. It thus provides the most direct means to

monitor the fundamental process of ‘‘energy failure’’. Of
critical importance is that such measurements can be
made in real time at the bedside.

In 2003, a group of experts met to review the status of
microdialysis as a clinical monitor. This culminated in the
publication of a consensus statement in 2004 [4] provid-
ing guidance on the use of the technique in TBI and SAH
patients. More recently, the role of microdialysis has
been evaluated by participants of the International Mul-
tidisciplinary Consensus Conference on Multimodality
Monitoring [5].

In April 2014, an international forum was convened in
Cambridge, UK, with the aim of reviewing evidence for
the clinical application of microdialysis in neurocritical
care and producing a revised and updated consensus
statement [4]. Since the original consensus statement,
*680 articles have been published on microdialysis in
neurocritical care. With this increased experience, there
was a need to update the 2004 consensus statement.
Although there was some overlap between the objectives
of this meeting and that of the International Multidisci-
plinary Consensus Conference on Multimodality
Monitoring, i.e. to review the evidence for using micro-
dialysis to guide clinical care, the principal objective of
the International Forum in Microdialysis differed in that
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Abstract Microdialysis enables the
chemistry of the extracellular inter-
stitial space to be monitored. Use of
this technique in patients with acute
brain injury has increased our under-
standing of the pathophysiology of

several acute neurological disorders.
In 2004, a consensus document on the
clinical application of cerebral
microdialysis was published. Since
then, there have been significant
advances in the clinical use of
microdialysis in neurocritical care.
The objective of this review is to
report on the International Micro-
dialysis Forum held in Cambridge,
UK, in April 2014 and to produce a
revised and updated consensus state-
ment about its clinical use including
technique, data interpretation, rela-
tionship with outcome, role in
guiding therapy in neurocritical care
and research applications.
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we aimed to combine literature review with expert opin-
ion to produce practical guidance for the use of cerebral
microdialysis as a clinical monitor and to help guide
future clinical studies utilizing cerebral microdialysis.

Methods

The senior authors selected specific ‘key speakers’ to
review a particular area of the literature. These individ-
uals were selected based on their experience and
contribution to the literature on a particular aspect of
microdialysis monitoring. See Appendix 1 in the supple-
mentary material for a list of key speakers and for the
topics they each reviewed. The other participants of the
meeting were identified through literature review and by
correspondence with the key speakers who were able to
identify other clinicians and scientists active in using
microdialysis in neurocritical care patients. At the meet-
ing, the literature was presented to the whole group
followed by discussion to allow consensus generation.
After the meeting, the recommendations were circulated
to all participants allowing further discussion and
revision.

In addition, for the purposes of the consensus state-
ment, we performed a PubMed database search using the
term microdialysis plus one of the following terms:
‘traumatic brain injury’, ‘brain injury’, ‘trauma’, ‘sub-
arachnoid hemorrhage’, ‘stroke’, ‘epilepsy’, ‘intracerebral
hematoma’ and ‘cost effectiveness’. We restricted our

review to using articles published in the English language.
Where recommendations are based on published obser-
vational data, the relevant references are given although
formal grading was not performed. Where references are
not provided, the recommendations are based on expert
opinion.

Discussion

Advances since the 2004 consensus statement

Over the past 10 years, there have been significant
advances in the clinical utility of microdialysis in neur-
ocritical care. Evidence from large numbers of patients on
how brain chemistry relates to clinical outcome means
that we can better define pathological thresholds for
microdialysis values. In addition, there is increasing evi-
dence of how different therapeutic manoeuvres can
improve chemistry. For a summary of the main advances
since the 2004 consensus statement, please see Table 1.

Most attention has been directed at the clinical utility
to monitor TBI and SAH patients: see Table 2 for a
summary of how brain chemistry relates to different
aspects of the care of patients with TBI and SAH.
Microdialysis has also been used in other neurological
conditions including intracerebral hemorrhage [6], acute
ischemic stroke [7–9], hepatic encephalopathy [10] and
epilepsy [11, 12]. However, there is insufficient evidence
at present to specifically incorporate the application of

Table 1 Summary of advances since the consensus statement by [4]

2004 consensus statement [4] Current consensus statement

Microdialysis methodology Monitoring of small molecules using
standard 10-mm 20-kDa catheter

Advances in monitoring of large molecules, with experience of
using 100-kDa membrane and colloid for perfusate [13–20]

Focus on microdialysis metabolites
as a marker of ischemia and cell
damage

Novel applications of microdialysis for monitoring and
understanding brain pathology following TBI and SAH

Core data reporting information Not defined Details are given of the essential information required to
interpret and compare microdialysis data

Reference values Not defined Pathological thresholds defined for glucose, lactate and the LP
ratio [6, 51, 53–55, 68–73, 79, 80]

Tiered approach to
microdialysis metabolites for
clinical application

Not defined Glucose and LP ratio more clinically useful than glutamate and
glycerol in TBI and SAH patients

Guidance for microdialysis-
directed management

Not given Suggested therapeutic interventions for when glucose is low
(\0.2 mM) and for when the LP ratio indicates
ischemia ± tissue hypoxia

Monitoring in TBI Guidance on catheter placement in
focal or diffuse injury

Guidance on single or multiple catheter placement based on
whether the injury is focal or diffuse and based on the aims of
microdialysis monitoring

Monitoring in SAH Guidance on catheter placement in
the tissue at risk

Two principal indications for microdialysis monitoring are
defined:

1. As a primary monitoring device in mechanically ventilated
patients

2. As a monitor of patients with a secondary neurological
deterioration
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microdialysis in these conditions into the consensus
statement.

In addition to recent advances as a clinical monitor,
microdialysis continues to be a powerful research tool
with numerous, varied and several novel applications that
provide insight into various aspects of cerebral biology
and pathophysiology. For a summary of on-going and
future research, see Table 3. Overall, further research
should be directed at the integration of brain chemistry
and other clinical monitoring data to better define targets
for the individualized goal-directed management of the
brain-injured patient.

Advances in microdialysis methodology

The technique of microdialysis is well established. For
details on technique and on the factors that affect relative
recovery, i.e. how the substance measured in the dialysate
is related to the free concentration in the tissue interstitial
space, please see supplementary material.

Microdialysis is used clinically to estimate extracel-
lular interstitial concentrations of small molecules, but
can also be used to recover much larger molecules such as
inflammatory mediators from the interstitial fluid. Instead
of the standard 20-kDa nominal molecular weight cut-off
membrane, which recovers glucose, pyruvate, lactate,
glycerol, glutamate, and other small hydrophilic mole-
cules, a 100-kDa membrane is used to also recover larger

molecules including cytokines. The recovery of small
molecules does not differ between the two membrane
types [13]. Increased experience in using microdialysis
for large molecules less than 100 kDa has been achieved
in the past 10 years. Importantly, the use of colloid in the
perfusate (e.g., albumin or dextran) significantly improves
the relative recovery of these large molecules [14–16].
However, in some situations, colloid perfusate can cause
net influx of fluid into the catheter potentially dehydrating
the interstitial space, and dextrans of molecular weight
40–250 kDa may leak through the microdialysis
membrane potentially disturbing the interstitial microen-
vironment [14, 15, 17]. These problems may be overcome
by using higher molecular weight dextrans, such as
500-kDa dextran, as colloid in the perfusate [18–20]. A
useful alternative colloid to dextran is human serum
albumin (HAS), which has been shown to improve
recovery for the majority of cytokines compared to
crystalloid perfusate without significantly dehydrating the
interstitial space [16].

Most experience of microdialysis in neurocritical care
has been obtained with hourly measurements although
more frequent sampling is possible [21–25]. Hourly
sampling appears sufficient to detect the metabolic
changes that can sometimes precede episodes of
intracranial hypertension in TBI and symptomatic delayed
ischemia in SAH [26–29]. Hence, microdialysis has the
potential to be used as an early warning system of sec-
ondary insults. However, dynamic changes in brain

Table 2 Summary of the evidence for how brain chemistry relates to different aspects of the management of patients with TBI and SAH

How microdialysis monitoring can be used in neurocritical care Traumatic
brain injury

Subarachnoid
hemorrhage

Outcome and prognostication [51, 53, 78] [67, 79, 81]
Early warning system of secondary insults [26, 27] [28, 29, 80, 82]
Monitoring and treatment of low cerebral glucose; guiding systemic

glucose management and insulin use
[56, 61, 62, 64, 65] [56, 63, 83, 84]

Monitoring during CPP-augmentation/reduction [48, 85, 86] [54, 87]
Monitoring during neurological wake-up test (tolerating moderate rises in ICP) [25, 88]
Deciding on transfusion thresholds [89]
Evaluating the effect of body temperature on cerebral chemistry [90] [91]
Monitoring after decompressive craniectomy [92] [93]

Table 3 A summary of on-going microdialysis research applications

Investigating the concept of lactate as a substrate as opposed to a metabolic by-product in select patients [79, 94]
Use of 100-kDa microdialysis membranes to measure larger molecules including cytokines [15, 16, 18, 19, 95]
Use of 13C-labelled substrates to interrogate metabolic pathways in more detail, e.g., the fate of glucose

metabolism (glycolysis vs. pentose phosphate pathway) and the fate of lactate as a substrate
[94, 96, 97]

Monitoring drug penetration across the blood–brain barrier and the effect of drugs on brain chemistry [98, 99]
Clinical use in pediatric practice [100–102]
Monitoring of the ionic component of the interstitial space [103]
Monitoring of biomarkers [18, 19, 104–111]
Development of microfluidic based on-line assays that give continuous neurochemical information in real time [23, 24, 112]
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chemistry, for example due to spreading depolarization
[21–23] or observed during aneurysm surgery [24, 30],
may not be detected with hourly measurements, so there
is potentially scope for improved technology with more
frequent microdialysis readings in future, which may lead
to better warning of adverse events.

Clinical application in intensive care

The clinical application of microdialysis in neurocritical
care has focused on the delivery of glucose and its
metabolism via glycolysis to pyruvate, which under
oxidative conditions feeds into the tricarboxylic acid
(TCA) cycle. Under hypoxic conditions, or if mitochon-
drial function is compromised, pyruvate is metabolized to
lactate. Hence, the LP ratio is used as a marker of aerobic
versus ‘‘anaerobic’’ metabolism not requiring oxygen [31,
32]. Glutamate is measured as a marker of hypoxia/is-
chemia and has been considered as an indicator of
excitotoxicity [31–34]. Glycerol is regarded a marker of
hypoxia/ischemia and cell membrane breakdown [32, 35–
37].

Safety profile

The technique of cerebral microdialysis is safe. Several
published series of patients studied with microdialysis,
which include non-brain-injured patients, have not
reported adverse events related to microdialysis catheter
insertion [29, 38–40]. Cerebral microdialysis has a safety
profile at least equivalent to that of intra-parenchymal
pressure sensors owing to the catheter’s greater flexibility
and small diameter [41]. In most circumstances when an
adverse event occurs, it relates to the insertion technique
rather than the catheter itself. Cerebral microdialysis has
mostly been used as a tool for observational studies.
Further evaluation of microdialysis as a clinical monitor
should include assessment of potential harm caused by
microdialysis-directed interventions.

Cost-benefit analysis

No cost effectiveness studies evaluating microdialysis in
neurocritical care have been performed. One study com-
pared ICP monitoring alone against multimodal
monitoring, which consisted of transcranial Doppler,
jugular venous oxygen saturation and/or PbtO2 monitor-
ing but not microdialysis [42]. Albeit a small study, it
demonstrated that increased upfront costs due to con-
sumables and equipment was offset by better clinical
outcomes, which meant that multimodal monitoring was
cost effective. In TBI patients, there are indications that
aggressive management, which includes invasive

monitoring, improves outcomes and is cost effective [43–
46]. However, these studies have not examined micro-
dialysis monitoring per se.

Recommendations from the 2014 International
Forum on Microdialysis––the 2014 consensus
statement

Methodology

• Catheters should be inserted according to local insti-
tutional protocols either by twist drill hole, transcranial
bolt, or at craniotomy.

• The first hour of microdialysate collected should not be
used for clinical monitoring due to unreliable results
caused by insertion trauma and the pump flush
sequence.

• To monitor glucose, pyruvate, lactate, glycerol and
glutamate catheters with a 20- or 100-kDa cut-off are
available (100-kDa catheters are not yet FDA-approved,
although they are CE marked for use in Europe).

• A flow rate of 0.3 lL/min with hourly sampling is
recommended, which is the flow rate most commonly
used in the cerebral microdialysis literature.

• Publication of microdialysis data should include the
following information (core data reporting):

• catheter type
• catheter location based on post-insertion imaging
• flow rate
• membrane length
• perfusion fluid composition
• time from ictus to monitoring

Interpretation of cerebral microdialysis

• Microdialysis monitors substrate delivery and metabo-
lism at the cellular level. Chemistry should be
interpreted in the context of the clinical condition of the
patient and in conjunction with other monitored
parameters including ICP, CPP, PbtO2, cerebrovascular
pressure reactivity (PRx) and systemic parameters, in
order to determine the likely cause of perturbed meta-
bolism. For example, a rise in LP ratio associated with
a fall in CPP and loss of cerebrovascular reactivity (i.e.,
a high PRx) indicates that the likely cause of disordered
chemistry is ischemia.

• Microdialysis is a focal technique. The heterogeneity of
brain injury means that brain chemistry varies in
different regions of the brain. In TBI, peri-lesional
brain demonstrates more perturbed chemistry, in par-
ticular a higher LP ratio, compared to other areas of
brain [47–52]. Therefore, brain chemistry should be
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interpreted according to catheter location in relation to
focal injury based on CT/MRI imaging.

Glucose

• Glucose is the main substrate for brain metabolism.
• Periods of low glucose (\0.8 mM) are observed in TBI

and SAH.
• Low brain glucose is associated with unfavorable

outcome [53–57].
• There is also evidence that high brain glucose is

associated with unfavorable outcome indicating that
there is an optimal range for brain glucose, although,
there is currently insufficient data to define this range
[51, 58].

• Serum glucose concentration and glycemic control
influence brain glucose although this relationship may
be lost in injured brain [56, 59–65].

• Brain glucose can be reduced rapidly by secondary
insults such as spreading depolarization [22, 66].

Lactate/pyruvate ratio

• A high LP ratio is associated with unfavorable outcome
[6, 51, 53, 54, 57, 67–73].

• The LP ratio is a marker of cellular redox status.
• The LP ratio is a quantitative measure (independent of

relative recovery).
• An increased LP ratio may result from a failure of

oxygen delivery (ischemic hypoxia) or from non-
ischemic causes (e.g., mitochondrial dysfunction) [74,
75].

• The absolute lactate and pyruvate concentrations
should be considered when interpreting a high LP
ratio.

• Ischemia and mitochondrial dysfunction are two ends
of a spectrum of factors that increase the LP ratio.

• An increase in the LP ratio in the presence of low
pyruvate (and low oxygen) indicates ischemia.

• An increase in LP ratio in the presence of normal or
high pyruvate (and normal oxygen) indicates mito-
chondrial dysfunction.

Glutamate

• Glutamate is an excitatory amino acid and neurotrans-
mitter. Excess levels are thought to be an additional
injurious mechanism and may exacerbate injury in TBI
and SAH.

• Excess glutamate release is observed in ischemia [8,
31, 33, 76] and seizures [11, 12, 76, 77].

• There is a described association between glutamate
levels, clinical course and outcome in TBI and SAH
[29, 78].

• Measuring cerebral glutamate is an option and may be
useful in estimating prognosis.

Glycerol

• Glycerol is a marker of cell membrane breakdown. It is
a potential marker of oxidative stress.

• Glycerol has limited specificity; brain glycerol concen-
trations are influenced by systemic concentrations.
Systemic glycerol concentrations reflect a stress
response and/or administration of glycerol-containing
substances.

• There is no definitive evidence of a relationship
between glycerol and outcome.

• Cerebral glycerol is an option as a marker of cerebral
injury.

Guidance for use of microdialysis in traumatic brain
injury and subarachnoid hemorrhage—catheter
location, reference values and interventions

Traumatic brain injury

• In diffuse TBI, we recommend placing the catheter in
the right (non-dominant) frontal lobe.

• In focal TBI, there are different options for catheter
placement that depend on whether the goal is to
monitor tissue at risk or normal brain, e.g., to guide
systemic glucose treatment.

• Where there is a focal lesion, we recommend, if
feasible, catheter placement ipsilateral to the lesion and
in radiographically normal brain.

• Multiple catheters are an option in focal TBI.

• E.g., placed at craniotomy for a focal lesion into peri-
lesional brain with a contralateral ‘bolt’ catheter in
radiographically normal brain.

• Stereotactic placement is an option but rarely
practical.

Subarachnoid hemorrhage

• There are two principal indications for the insertion of
microdialysis in SAH patients:

1. As a primary monitoring device in mechanically
ventilated (‘poor-grade’) patients.

2. As a monitor of patients with a secondary neuro-
logical deterioration.

• As a primary monitoring device, we recommend
catheter location in the watershed anterior cerebral
artery–middle cerebral artery (ACA–MCA) territory
(frontal lobe) on the same side as the maximal blood
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load seen on CT or the ruptured aneurysm. If the blood
load is symmetrical, we recommend non-dominant
frontal lobe placement.

• In patients with a secondary neurological deterioration,
catheter location should be guided by local practice to
identify tissue at risk (e.g., CT perfusion scanning or
trans-cranial Doppler).

• Multiple catheters are an option in SAH.

Reference values and interventions

• It is currently difficult to define absolute normal or
abnormal values based on the literature. Different
groups have used different threshold values to relate
microdialysate values to outcome. Furthermore, some
authors have used a combination of values to relate
microdialysis to clinical outcomes.

• The trend is as important or possibly more important
than point values or threshold values.

• It is important to distinguish between normal values,
which have been reported in the awake and anes-
thetised brain of patients undergoing surgery for benign
intracranial lesions, and values that characterize patho-
physiological disturbance of brain chemistry.

• We propose the following pathological thresholds (one
or two stages), for microdialysis at 0.3 ll/min, based on
observational studies that have explored statistical
differences in outcomes in relation to thresholds of
microdialysate values. Microdialysate values observed
beyond these thresholds indicate that the area of brain
being monitored is ‘at risk’. We propose clinical
interventions that may be appropriate in response to
disturbed brain chemistry. Further research is needed to
elucidate whether these thresholds can be applied to
both peri-lesional and to radiographically normal brain
and to identify whether interventions directed by these
thresholds improve clinical outcomes.

• Glucose:\0.2 and\0.8 mmol/L [53–55, 73].
• If brain glucose is low (\0.2 mM), a trial of increasing

serum glucose (by intravenous or enteral administra-
tion and/or loosening glycemic control) should be
considered. Factors to consider when deciding whether
this is an appropriate intervention include baseline
serum glucose concentration and whether other
parameters indicate cerebral ischemia. If baseline
serum glucose concentration is high, further increasing
the glucose concentration is likely to increase the risk
of both neurological and systemic complications from
hyperglycemia. The precise definition of blood sugar
thresholds for safety is beyond the scope of this
manuscript, but frank hyperglycemia should be
avoided. If other parameters, such as the LP ratio
and PbtO2, indicate ischemia, interventions directed at

improving cerebral perfusion should be considered
first-line.

• Lactate:[4 mmol/L [51, 73, 79, 80].

• Lactate/pyruvate ratio: [25 and [40 [6, 51, 53, 54,
68–73].

• If the LP ratio indicates ischemia, i.e. an increase in
the LP ratio in the presence of low pyruvate, CPP
augmentation is a therapeutic option.

• If the LP ratio is increased in the presence of low brain
tissue oxygen, interventions that improve oxygen
delivery, such as judiciously increasing the cerebral
perfusion pressure, increasing PaCO2, increasing
inspired concentration of oxygen and/or correcting
anemia, should be considered. However, all of these
interventions have potential side effects, and the
choice of intervention will depend on the pre-
intervention levels of any given variable, and a
consideration of the side effects of the intervention.
Thus, for example, in patients with significant
hypocarbia, an increase in PaCO2 might be the most
appropriate intervention, but may be difficult to
achieve due to increases in intracranial pressure.

Tiered approach to the clinical value of substances

• Accumulating evidence since the last consensus state-
ment indicates that the value of the metabolites can
now be considered in a tiered fashion (tier 1 being most
robust and useful) for their clinical application as fol-
lows. This hierarchy is based on the larger volume of
observational data linking glucose and LP ratio with
outcome compared to glutamate and glycerol and on
the greater potential for glucose and LP ratio to direct
clinical interventions.

• Tier 1: glucose and LP ratio.
• Tier 2: glutamate.
• Tier 3: glycerol.

Summary and future directions

Cerebral microdialysis is a reliable and safe technique that
is used in the clinical management of neurocritical care
patients and in particular those with severe TBI or SAH. In
addition, there are several research applications that are
important for developing our understanding of brain phys-
iology, pathophysiology and drug development. Since the
2004 consensus document, there have been significant
advances in our understanding of how microdialysis can be
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used. There is now evidence from large numbers of patients
on how abnormal brain chemistry relates to clinical out-
come. The measurement of glucose, lactate and the LP ratio
are now considered more useful than glutamate and glyc-
erol. The LP ratio, interpreted in the light of absolute
pyruvate concentrations and PbtO2, can be used to differ-
entiate ischemic from non-ischemic causes of energy
dysfunction. Importantly, there is increasing evidence of
how different therapeutic manoeuvres influence brain
chemistry. Microdialysis is well placed to help guide the
management of patients in an individualized and targeted
fashion. For its effective use, microdialysis should be
integrated into brain multi-modal monitoring systems and
interpreted with knowledge of catheter location and clinical
context. Future clinical research should focus on assessing
the clinical effectiveness of decision-making based on
microdialysis, as part of multi-modality monitoring of acute
brain injured patients, and its integration into treatment
paradigms in neurocritical care.
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