5 research outputs found

    Inhibitors of trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease.

    Get PDF
    Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region's leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2) proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1) is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnaphthalimidopropyl (BNIP) derivatives, a class of parasite sirtuin inhibitors. BNIPs ability to inhibit TcSir2rp1, and anti-parasitic activity against T. cruzi amastigotes in vitro were investigated. The compound BNIP Spermidine (BNIPSpd) (9), was found to be the most potent inhibitor of TcSir2rp1. Moreover, this compound showed altered trypanocidal activity against TcSir2rp1 overexpressing epimastigotes and anti-parasitic activity similar to the reference drug benznidazole against the medically important amastigotes, while having the highest selectivity index amongst the compounds tested. Unfortunately, BNIPSpd failed to treat a mouse model of Chagas disease, possibly due to its pharmacokinetic profile. Medicinal chemistry modifications of the compound, as well as alternative formulations may improve activity and pharmacokinetics in the future. Additionally, an initial TcSIR2rp1 model in complex with p53 peptide substrate was obtained from low resolution X-ray data (3.5 Ă…) to gain insight into the potential specificity of the interaction with the BNIP compounds. In conclusion, the search for TcSir2rp1 specific inhibitors may represent a valuable strategy for drug discovery against T. cruzi

    Genetic Dissection of Intermated Recombinant Inbred Lines Using a New Genetic Map of Maize

    No full text
    A new genetic map of maize, ISU–IBM Map4, that integrates 2029 existing markers with 1329 new indel polymorphism (IDP) markers has been developed using intermated recombinant inbred lines (IRILs) from the intermated B73 × Mo17 (IBM) population. The website http://magi.plantgenomics.iastate.edu provides access to IDP primer sequences, sequences from which IDP primers were designed, optimized marker-specific PCR conditions, and polymorphism data for all IDP markers. This new gene-based genetic map will facilitate a wide variety of genetic and genomic research projects, including map-based genome sequencing and gene cloning. The mosaic structures of the genomes of 91 IRILs, an important resource for identifying and mapping QTL and eQTL, were defined. Analyses of segregation data associated with markers genotyped in three B73/Mo17-derived mapping populations (F(2), Syn5, and IBM) demonstrate that allele frequencies were significantly altered during the development of the IBM IRILs. The observations that two segregation distortion regions overlap with maize flowering-time QTL suggest that the altered allele frequencies were a consequence of inadvertent selection. Detection of two-locus gamete disequilibrium provides another means to extract functional genomic data from well-characterized plant RILs

    Additional file 6: of Genetic mapping and comparative genomics to inform restoration enhancement and culture of southern flounder, Paralichthys lethostigma

    Get PDF
    Comparative view of location of syntenic blocks on consensus linkage map of southern flounder and fugu. Solid black rectangles represent chromosomes of fugu. Black ticks indicate the positions of loci mapped on southern flounder linkage groups (colored rectangles); loci mapped to the same location are stacked. Syntenic blocks are connected by ribbons; the color corresponds to the color of each linkage group. Width of the ribbon represents size of the syntenic block on a linkage group and its corresponding location on the chromosome of each comparison species. (PNG 2296 kb
    corecore