132 research outputs found

    Angiotensin II receptor blockade attenuates the deleterious effects of exercise training on post-MI ventricular remodelling in rats

    Get PDF
    Objectives: The effects of exercise training on LV remodelling following large anterior myocardial infarction (MI) remains controversial. Blockade of the renin-angiotensin system has been shown to prevent ventricular dilation and deleterious remodeling. We therefore tested, in a rat model of chronic MI, whether any potentially deleterious effects of exercise on post-MI remodelling could be ameliorated by angiotensin II receptor blockade. Methods: Male Wistar rats underwent coronary ligation or sham operation. Treatment with losartan (10 mg/kg/day) began 1 week post-MI and moderate treadmill exercise (25 m/min, 60 min/day, 5 days/week) was initiated 2 weeks post-MI. Systolic and diastolic pressure-volume relationships were measured in isolated, red-cell perfused, isovolumically beating hearts 8 weeks post-MI. Morphometric measurements were performed in trichrome stained cross sections of the heart. Five groups of animals were compared: sham (n=13), control MI (MI; n=11), MI plus losartan (MI-Los; n=13), MI plus exercise (MI-Ex; n=10) and MI plus exercise and losartan (MI-Ex-Los; n=12). Results: Infarct size (% of left ventricle, LV) was similar among the infarcted groups [MI=43±4%, MI-Los=49±2%, MI-Ex=45±1%, MI-Ex-Los=48±2% (NS)]. Exercise, losartan and exercise+losartan treatments all attenuated LV dilation post-MI to a similar degree. Exercise training increased LV developed pressure in both untreated and losartan treated hearts (P<0.05 vs. other MI groups). In addition, exercise resulted in additional scar thinning in untreated hearts, while no additional scar thinning was seen in post-infarct hearts receiving both losartan and exercise. Conclusions: Following large anterior MI, losartan attenuated LV dilation and scar thinning. In untreated animals, exercise decreased dilation, but also contributed to scar thinning. Therefore, exercise concurrent with blockade of the renin-angiotensin system may provide optimal therapeutic benefit following large anterior M

    Titin Determines the Frank-Starling Relation in Early Diastole

    Get PDF
    Titin, a giant protein spanning half the sarcomere, is responsible for passive and restoring forces in cardiac myofilaments during sarcomere elongation and compression, respectively. In addition, titin has been implicated in the length-dependent activation that occurs in the stretched sarcomere, during the transition from diastole to systole. The purpose of this study was to investigate the role of titin in the length-dependent deactivation that occurs during early diastole, when the myocyte is shortened below slack length. We developed a novel in vitro assay to assess myocyte restoring force (RF) by measuring the velocity of recoil in Triton-permeabilized, unloaded rat cardiomyocytes after rigor-induced sarcomere length (SL) contractions. We compared rigor-induced SL shortening to that following calcium-induced (pCa) contractions. The RF–SL relationship was linearly correlated, and the SL-pCa curve displayed a characteristic sigmoidal curve. The role of titin was defined by treating myocytes with a low concentration of trypsin, which we show selectively degrades titin using mass spectroscopic analysis. Trypsin treatment reduced myocyte RF as shown by a decrease in the slope of the RF-SL relationship, and this was accompanied by a downward and leftward shift of the SL-pCa curve, indicative of sensitization of the myofilaments to calcium. In addition, trypsin digestion did not alter the relationship between SL and interfilament spacing (assessed by cell width) after calcium activation. These data suggest that as the sarcomere shortens below slack length, titin-based restoring forces act to desensitize the myofilaments. Furthermore, in contrast to length-dependent activation at long SLs, length-dependent deactivation does not depend on interfilament spacing. This study demonstrates for the first time the importance of titin-based restoring force in length-dependent deactivation during the early phase of diastole

    Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment

    Get PDF
    This is the published version. Copyright 2014 Royal Society of ChemistryCell alignment is a critical factor to govern cellular behavior and function for various tissue engineering applications ranging from cardiac to neural regeneration. In addition to physical geometry, strain is a crucial parameter to manipulate cellular alignment for functional tissue formation. In this paper, we introduce a simple approach to generate a range of gradient static strains without external mechanical control for the stimulation of cellular behavior within 3D biomimetic hydrogel microenvironments. A glass-supported microfluidic chip with a convex flexible polydimethylsiloxane (PDMS) membrane on the top was employed for loading the cells suspended in a prepolymer solution. Following UV crosslinking through a photomask with a concentric circular pattern, the cell-laden hydrogels were formed in a height gradient from the center (maximum) to the boundary (minimum). When the convex PDMS membrane retracted back to a flat surface, it applied compressive gradient forces on the cell-laden hydrogels. The concentric circular hydrogel patterns confined the direction of hydrogel elongation, and the compressive strain on the hydrogel therefore resulted in elongation stretch in the radial direction to guide cell alignment. NIH3T3 cells were cultured in the chip for 3 days with compressive strains that varied from ~65% (center) to ~15% (boundary) on hydrogels. We found that the hydrogel geometry dominated the cell alignment near the outside boundary, where cells aligned along the circular direction, and the compressive strain dominated the cell alignment near the center, where cells aligned radially. This study developed a new and simple approach to facilitate cellular alignment based on hydrogel geometry and strain stimulation for tissue engineering applications. This platform offers unique advantages and is significantly different from the existing approaches owing to the fact that gradient generation was accomplished in a miniature device without using an external mechanical source

    Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure

    Get PDF
    Rationale: Heart failure is a deadly and devastating disease that places immense costs on an aging society. To develop therapies aimed at rescuing the failing heart, it is important to understand the molecular mechanisms underlying cardiomyocyte structure and function. Objective: microRNAs are important regulators of gene expression, and we sought to define the global contributions made by microRNAs toward maintaining cardiomyocyte integrity. Methods and Results: First, we performed deep sequencing analysis to catalog the miRNA population in the adult heart. Second, we genetically deleted, in cardiac myocytes, an essential component of the machinery that is required to generate miRNAs. Deep sequencing of miRNAs from the heart revealed the enrichment of a small number of microRNAs with one, miR-1, accounting for 40% of all microRNAs. Cardiomyocyte-specific deletion of dgcr8, a gene required for microRNA biogenesis, revealed a fully penetrant phenotype that begins with left ventricular malfunction progressing to a dilated cardiomyopathy and premature lethality. Conclusions: These observations reveal a critical role for microRNAs in maintaining cardiac function in mature cardiomyocytes and raise the possibility that only a handful of microRNAs may ultimately be responsible for the dramatic cardiac phenotype seen in the absence of dgcr8.National Institutes of Health (U.S.) (Grant R01 DK068348-04)Broad Institute of MIT and Harvard (SPARC Grant)National Institutes of Health (U.S.) (Grant NIH-HL52212)National Institutes of Health (U.S.) (Grant NIH RO1-HD0445022)National Institutes of Health (U.S.) (Grant NIH RO1-CA087869)National Institutes of Health (U.S.) (Grant NIH/NHLBI P01-HL066105)National Institutes of Health (U.S.) (Grant NIH R37-CA084198
    corecore