50 research outputs found

    ChIP-seq identifies McSLC35E2 as a novel target gene of McNrf2 in Mytilus coruscus, highlighting its role in the regulation of oxidative stress response in marine mollusks

    Get PDF
    NF-E2-related factor 2 (Nrf2) plays a crucial role in the oxidative regulatory process, which could trigger hundreds of antioxidant elements to confront xenobiotics. In the previous study, we identified Nrf2 from the marine mussel Mytilus coruscus, and the findings demonstrated that McNrf2 effectively protected the mussels against oxidative stress induced by benzopyrene (Bap). In order to delve deeper into the underlying mechanism, we utilized Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) technology to systematically identify potential novel target genes of McNrf2. A total of 3,465 potential target genes were screened, of which 219 owned binding sites located within the promoter region. During subsequent experimental verification, it was found that McSLC35E2, a candidate target gene of McNrf2, exhibited negative regulation by McNrf2, as confirmed through dual luciferase and qRT-PCR detection. Further, the enzyme activity tests demonstrated that McNrf2 could counteract Bap induced oxidative stress by inhibiting McSLC35E2. The current study provides valuable insights into the application of ChIP-seq technology in the research of marine mollusks, advancing our understanding of the key role of Nrf2 in antioxidant defense mechanisms, and highlighting the significance of SLC35E2 in the highly sophisticated regulation of oxidative stress response in marine invertebrates

    In Situ and Operando Investigation of the Dynamic Morphological and Phase Changes of Selenium-doped Germanium Electrode during (De)Lithiation Processes

    Get PDF
    To understand the effect of selenium doping on the good cycling performance and rate capability of a Ge0.9Se0.1 electrode, the dynamic morphological and phase changes of the Ge0.9Se0.1 electrode were investigated by synchrotron-based operando transmission X-ray microscopy (TXM) imaging, X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The TXM results show that the Ge0.9Se0.1 particle retains its original shape after a large volume change induced by (de)lithiation and undergoes a more sudden morphological and optical density change than pure Ge. The difference between Ge0.9Se0.1 and Ge is attributed to a super-ionically conductive Liā€“Seā€“Ge network formed inside Ge0.9Se0.1 particles, which contributes to fast Li-ion pathways into the particle and nano-structuring of Ge as well as buffering the volume change of Ge. The XRD and XAS results confirm the formation of a Liā€“Seā€“Ge network and reveal that the Liā€“Seā€“Ge phase forms during the early stages of lithiation and is an inactive phase. The Liā€“Seā€“Ge network also can suppress the formation of the crystalline Li15Ge4 phase. These in situ and operando results reveal the effect of the in situ formed, super-ionically conductive, and inactive network on the cycling performance of Li-ion batteries and shed light on the design of high capacity electrode materials

    Reconstruction and Removal Mechanisms of Gel-like Membrane Fouling for Seawater Desalination: Experiments and Molecular Dynamics Simulations

    No full text
    Anti-gel fouling is a key problem faced by membrane desalination, especially for applications in organic acid-rich seawater. In this paper, a chemical crosslinking-based method was used to reconstruct and characterize the gel pollutants produced under the actual operating conditions of seawater desalination. In addition to the calcium alginate/calcium humate three-dimensional network skeleton, salt ions (K+, Na+, Mg2+, Cl−) in solution were also considered to ensure that the reconstructed gel was similar to pollutant gels on membranes under practical operating conditions. Characterizations showed that the reconstructed gel has high thermal insulation and stability, thus adjusting the temperature has no removal effect. Two detergents (sodium citrate and sodium hydroxide) were investigated, and their gel-removal mechanism was elucidated by molecular dynamics simulation. Numerical analysis showed that the electrostatic attraction interaction had a significant role in the gel cleaning process. Owing to the attraction of the lower electrostatic potential region in the cleaning agent, the ion exchange between Na+ in the cleaning agent and Ca2+ in the gel led to the breaking of the Ca2+-induced intermolecular bridge in the complex. As the adhesion of fouling gels decreased, the gel water solubility was increased, resulting in a decrease in weight and strength of the gel. Therefore, the integrity of the gel fouling layer was weakened and can be effectively removed. This study provides a theoretical basis for the removal of gel-like membrane fouling during actual seawater desalination

    Genetic Algorithm ā€“ Back Propagation (GA-BP) Neural Network for Chlorophyll-a Concentration Inversion Using Landsat 8 OLI Data

    No full text
    Chlorophyll-a (Chl-a) accurate inversion in inland water is important for water environmental protection. In this study, we tested the Genetic Algorithm optimized Back Propagation (GA-BP) neural network model to precisely simulated the Chl-a in an inland lake using Landsat 8 OLI images. The result show that the R2 of GA-BP neural network model has increased 28.17% compared to traditional BP neural network model. Then this GA-BP model was applied to another two scenes of Landsat 8 OLI image with the R2 of 0.961, 0.954 respectively for March 26 2018, October 26 2018. And the spatial distribution have shown a reasonable result of Chl-a variation in Lake Donghu. This study can provide a new method for Chla concentration inversion in urban lakes and support water environment protection on a large scale

    A Review of Polymer-Based Environment-Induced Nanogenerators: Power Generation Performance and Polymer Material Manipulations

    No full text
    Natural environment hosts a considerable amount of accessible energy, comprising mechanical, thermal, and chemical potentials. Environment-induced nanogenerators are nanomaterial-based electronic chips that capture environmental energy and convert it into electricity in an environmentally friendly way. Polymers, characterized by their superior flexibility, lightweight, and ease of processing, are considered viable materials. In this paper, a thorough review and comparison of various polymer-based nanogenerators were provided, focusing on their power generation principles, key materials, power density and stability, and performance modulation methods. The latest developed nanogenerators mainly include triboelectric nanogenerators (TriboENG), piezoelectric nanogenerators (PENG), thermoelectric nanogenerators (ThermoENG), osmotic power nanogenerator (OPNG), and moist-electric generators (MENG). Potential practical applications of polymer-based nanogenerator were also summarized. The review found that polymer nanogenerators can harness a variety of energy sources, with the basic power generation mechanism centered on displacement/conduction currents induced by dipole/ion polarization, due to the non-uniform distribution of physical fields within the polymers. The performance enhancement should mainly start from strengthening the ion mobility and positive/negative ion separation in polymer materials. The development of ionic hydrogel and hydrogel matrix composites is promising for future nanogenerators and can also enable multi-energy collaborative power generation. In addition, enhancing the uneven distribution of temperature, concentration, and pressure induced by surrounding environment within polymer materials can also effectively improve output performance. Finally, the challenges faced by polymer-based nanogenerators and directions for future development were prospected

    Experimental investigation on possibility of electro-osmotic regeneration for solid desiccant

    No full text
    This paper aims to investigate the possibility and performance of a novel electro-osmotic regeneration method for the solid desiccant system, which could adsorb water from the moist air and be regenerated by the electro-osmotic force at the same time, by detailed experimental validation. The zeolite powder with both electro-osmotic and adsorptive characteristics was selected to make the solid desiccant. The quantity of the removed water was measured in the condition with and without an applied electric field to validate the possibility of the electro-osmotic regeneration. The test data show that there was an obvious electro-osmotic regeneration effect in the experiments. The whole electro-osmosis process was divided into three phases because of the Joule heating effect and electrode corrosion, which limited the performance of the experimental system. In particular, a filter cloth under the cathode made a superior electro-osmotic regeneration effect than without the cloth. The experimental results illustrate that the system has the potential of energy-saving and low regeneration temperature. So the electro-osmotic regeneration method is a potential regeneration method for the solid desiccant system.Electro-osmotic Regeneration Solid desiccant Experiment
    corecore