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NF-E2-related factor 2 (Nrf2) plays a crucial role in the oxidative regulatory
process, which could trigger hundreds of antioxidant elements to confront
xenobiotics. In the previous study, we identified Nrf2 from the marine mussel
Mytilus coruscus, and the findings demonstrated thatMcNrf2 effectively protected
the mussels against oxidative stress induced by benzopyrene (Bap). In order to
delve deeper into the underlying mechanism, we utilized Chromatin
Immunoprecipitation followed by sequencing (ChIP-seq) technology to
systematically identify potential novel target genes of McNrf2. A total of
3,465 potential target genes were screened, of which 219 owned binding sites
located within the promoter region. During subsequent experimental verification,
it was found that McSLC35E2, a candidate target gene of McNrf2, exhibited
negative regulation by McNrf2, as confirmed through dual luciferase and qRT-
PCR detection. Further, the enzyme activity tests demonstrated thatMcNrf2 could
counteract Bap induced oxidative stress by inhibiting McSLC35E2. The current
study provides valuable insights into the application of ChIP-seq technology in the
research of marine mollusks, advancing our understanding of the key role of
Nrf2 in antioxidant defense mechanisms, and highlighting the significance of
SLC35E2 in the highly sophisticated regulation of oxidative stress response in
marine invertebrates.
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1 Introduction

In recent years, the thick shell musselMytilus coruscus has gradually developed into a
model organism for studying marine invertebrates responses to environmental changes,
including natural influences such as temperature rise and acidification, as well as
environmental pollution from organic and inorganic substances (Zhao et al., 2020;
Dong et al., 2023; Wang et al., 2023). Our research focuses on the molecular-level
responses of M. coruscus to polycyclic aromatic hydrocarbons (PAHs) pollution,
particularly on its member benzo(a)pyrene (Bap). Bap has been proven to cause
severe harm to marine organisms, including immune system disruption, metabolic
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inhibition, induction of mutagenic reactions, and tissue damage
(Xiu et al., 2014; Kim et al., 2017). To adapt and resist stress, the
cellular organisms activate a multi-layered defense system that is
closely associated with various cellular processes, with
transcription regulation being one of the most crucial
components of this integrated system (Hirotsu et al., 2012).
NF-E2-related factor 2 (Nrf2), identified as a fundamental
leucine zipper nuclear transcription factor, holds a central
position in cellular reactions to diverse environmental
contaminants (Shaw et al., 2020). The primary function of
Nrf2 involves overseeing the expression of numerous
antioxidant genes, consequently enabling the activation of the
Nrf2 signaling pathway to proficiently govern cellular
antioxidant and detoxification reactions (Liu et al., 2021).
Nrf2 is also believed to be involved in host defense during the
antimicrobial immune response (Wang et al., 2021c).
Furthermore, there is increasing evidence suggesting that
Nrf2 exerts significant effects on lipid, carbohydrate, and
amino acid metabolism (Hayes and Dinkova-Kostova, 2014).
These characteristics contributes to its ability to efficiently
coordinate different forms of stress responses (Zago et al.,
2021). In our previous study, McNrf2 was identified from M.
coruscus, and the experimental results unequivocally
demonstrated that McNrf2 efficiently plays a pivotal role in
protecting the mussels from oxidative stress induced by Bap
(Qi and Tang, 2020). Thereafter, the transcriptional regulation
mechanism of McNrf2 against Bap oxidation is the focus of our
next research.

Understanding transcriptional regulation is essential to
comprehending the gene regulatory networks behind various
cellular pathways and processes. Accurate mapping of
transcription factor binding sites (TFBS) on a genome-wide
scale can provide invaluable insights into gene regulation.
Protein-DNA interactions are key to this mapping process and
an extensive genome-wide map of interaction data is necessary to
build meaningful models of TFBS (Farnham, 2009). Chromatin
immunoprecipitation (ChIP) is a widely used technique to
investigate the mechanisms of protein-DNA binding in living
cells. This technique uses antibodies to isolate specific proteins or
nucleosomes, thereby enriching for DNA fragments bound to
them. ChIP is a powerful tool for probing protein-DNA
interactions as it allows to accurately pinpoint gene regulatory
regions and quantify their respective activities (Solomon et al.,
1988). NGS (next-generation sequencing) has rapidly
revolutionized the landscape of available genomic assays,
transforming them into powerful and versatile tools (Shendure
and Ji, 2008). Chromatin immunoprecipitation followed by
sequencing (ChIP–seq) was one of the typical applications of
NGS. In ChIP-seq, the DNA segments of interest are sequenced
directly, rather than hybridized on an array, thus providing
greater coverage, higher resolution, and greater dynamic
range, ultimately producing better data (Park, 2009). Johnson
et al. (2007) demonstrated that ChIP-seq could improves the
sensitivity and specificity of genome-wide localization of
transcription factor binding sites. Despite the extensive and
mature application of ChIP-seq in higher organisms such as
human beings, its application in lower eukaryotes is still very
rare. Thus far, only a few research groups have made attempts to

incorporate this technology into studies involving marine
mollusks. Li et al. (2022) employed ChIP-seq to analyse the
genes regulated by Heat shock transcription factor 1 (HSF1)
in the Pacific oyster Crassostrea gigas, and found a number of
Heat shock protein (HSP) genes bind to HSF1. This research
unveiling the application of ChIP-seq technology in marine
mollusks.

In the present study, we employed ChIP-seq assay to
comprehensively screen for potential novel target genes of
McNrf2, followed by subsequent experimental validation. We
revealed for the first time that solute carrier family 35 member
E2 (SLC35E2) functions as a target gene for McNrf2, which is
demonstrated by the binding of McNrf2 to the promoter region
of McSLC35E2. Subsequent dual-luciferase and qRT-PCR assays
further confirmed this fact. Further, the enzyme activity tests
determined that McNrf2 could target McSLC35E2 to antagonize
Bap induced oxidative stress. The current study provides valuable
insights into the application of ChIP-seq technology in the research
of marine mollusks. Moreover, the research findings have advanced
our understanding of the key role of Nrf2 in antioxidant defense
mechanisms and highlights the significance of SLC35E2 in the
highly sophisticated regulation of oxidative stress response in
marine invertebrates.

2 Materials and methods

2.1 Experimental materials

A total of 200 healthy M. coruscus mussels were obtained from
Donghe Market, Zhoushan City, Zhejiang Province. These mussels
were acclimated in a tank at a temperature of 20°C for 1 week. The
seawater used had a salinity of 30% ± 1% and a pH of 8.0 ± 0.3. The
seawater was renewed every 2 days, and the mussels were fed with
Spirulina powder on a daily basis.

2.2 ChIP sample preparation

The digestive gland cells of mussels were extracted and 20 mL
formaldehyde fixative was added to make the final concentration
1%. After incubation at room temperature on a 100 × g for 10 min,
the cells were added 10 mL of glycine termination solution with a
5 min centrifugation at 300 × g, 4°C. The cells were then washed
twice with phosphate buffer containing 1 mM PMSF to remove any
remaining formaldehyde. After washing, 1 mL of lysis buffer was
added, lysed on ice for 30 min, followed by a cells collection by
centrifugation at 5,000 × g, 4°C for 10 min. Next, 350 μL of pre-
warmed digestion buffer was added, and the mixture was incubated
at 37°C for 5 min. The cut chromatin was separated, and 10 μL of
input DNA was labeled and kept as a control for ChIP samples. The
ChIP reaction system was prepared and then incubated overnight at
4°C on a rotating shaker. Subsequently, the magnetic beads were
washed, and the chromatin was eluted. Uncross linking and
proteinase K treatment were performed afterward. Finally, the
resulting DNA was purified, and the detailed steps were
described in the Magnetic Chromatin Immunoprecipitation Kit
(Active Motif, CA, United States).
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2.3 Illumina sequencing

ChIP-seq libraries were generated following the Illumina ChIP-
seq library construction protocol. The chip DNA was fragmented
into fragments of approximately 200 bp in length. These DNA
fragments then underwent end repair and A-tailing processes.
Subsequently, adaptor ligation was performed to attach
sequencing adaptors to the DNA fragments. To ensure high-
quality libraries, the quality assessment of DNA library products
was conducted using the Agilent 2200 TapeStation (Agilent
Technologies, United States) and Qubit (Thermo Fisher
Scientific, United States). Subsequently, the libraries were
subjected to pair-end 150 bp sequencing on the Illumina
platform (Illumina, NovaSeq 6000, United States) at Ribobio Co.,
Ltd. (Ribobio, China).

2.4 ChIP-seq data analyses

The raw fastq sequences were processed using Trimmomatic
tools (v0.36) with the following options: TRAILING: 20,
SLIDINGWINDOW: 4:15, MINLEN: 52. This process was
performed to eliminate trailing sequences with a phred quality
score below 20 and to obtain uniform sequence lengths for
subsequent clustering procedures (Bolger et al., 2014). The
genome alignment, based on the UCSC Genome Browser
version, was conducted using bowtie2 (version: 2.5.1) to
obtain unique mapping reads, aligning them to the M.
coruscus genome (unpublished) (Langmead and Salzberg,
2012). Subsequently, MACS3 (version 3.0.0a7) was utilized for
peak calling, with the corresponding input sample serving as the
control for the analysis (Zhang et al., 2008). Then using Hommer
(version:4.11.1) to annotate the peaks. The nucleotides in peaks
region were used for detection of the consensus m6A motif by
DREME (version: 5.5.1) and MEME (version: 5.5.1) (Heinz et al.,
2010). Motif central enrichment was performed by CentriMo
(version: 5.5.1) (Ma et al., 2014). Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis was
performed using KOBAS3.0/ the “clusterProfiler” package in R
Bioconductor. The enriched results were restricted to KEGG
pathway terms. The KEGG pathway terms with adjusted p <
0.05 were considered to be significant.

2.5 Validation of target genes by a dual
luciferase assay

To validate the relationship between McNrf2 with a candidate
target geneMcSLC35E2, dual luciferase assays were performed using
the Dual-Glo® Luciferase Assay System (Promega, Madison, WI,
United States). The experimental procedure followed the
instructions provided by the manufacturer. The ChIP-seq data
revealed the enrichment of the potential binding site, i.e., the
region of the SLC35E2 promoter where Nrf2 is capable of
binding. The region approximately 1 kb upstream of the SLC35E2
gene was cloned into the pGL3-control luciferase reporter plasmid.
Additionally, the Nrf2 fragment was cloned for insertion into the
pcDNA3.1 plasmid. After cloning, the recombinant plasmids were

transfected into the recipient cells, and subsequent extraction was
carried out for sequencing verification. Plasmids that underwent
successful sequencing were co-transfected into cells. Then, the
activity of the reporter gene was assessed using the Dual-
Luciferase Reporter Assay System. The fluorescence signals for
both Firefly and Renilla luciferase were captured using the
Varioskan Flash Multimode Reader from Thermo Fisher
Scientific (Waltham, MA, United States). The recorded
fluorescence values for each experimental group were then
utilized to evaluate the regulatory effect of Nrf2.

2.6 Determination of expression patterns by
qRT-PCR

After 1 week of individual domestication, SFN (Sulforaphane),
ML385 (N-[4-[2,3-Dihydro-1-(2-methylbenzoyl)-1H-indol-5-yl]-
5-methyl-2-thiazolyl]-1,3-benzodioxole-5-acetamide), and PBS
were administered via injection. Digestive gland tissues of M.
coruscus were collected at 24 h. Three individuals were selected
from each group for sampling. Total RNA was extracted using the
RNA extraction kit from Solarbio (Beijing, China), followed by a
reverse transcription using cDNA synthesis kit (Solarbio, Beijing,
China). The housekeeping gene β-actin was employed as a control
gene in our study. The qRT-PCR was conducted utilizing the SYBR
Green Real-Time PCR Mix (Takara, Nanjing, China) on a ABI
7500 Fast Real-Time PCR System (Applied Biosystems, Foster, CA,
United States) and. Data analysis was carried out using the 2−ΔΔCT

method (Livak and Schmittgen, 2001). The primers were listed in
Supplementary Table S1.

2.7 ROS and T-AOC determination

The eukaryotic expression recombinant plasmids ofMcNrf2 and
McSLC35E2, which were prepared in our laboratory, were collected
and their final concentration was diluted to 300 ng/μL. M. coruscus
individuals (Net weight: 19.8 ± 0.3 g) were randomly divided into
5 groups, each consisting of 6 mussels. The adductor muscle of each
mussel was injected with either 100 µL McNrf2, McSLC35E2, or
200 µL of both McNrf2 and McSLC35E2. After injection, the
individuals were exposed to Bap separately. Subsequently, the
reactive oxygen species (ROS) production and total antioxidant
capacity (T-AOC) were detected by using kits (Jian cheng, Nanjing,
China).

2.8 Statistical analysis

All data were analyzed using SPSS 27.0 software (IBM Corp.,
Armonk, NY, United States). The results were presented as
mean ± SD. Before conducting statistical analysis, normality
tests and tests for homogeneity of variances were performed.
For comparing two sets of data, the t-test was utilized. Data with
more than two sets were analyzed using one-way analysis of
variance (ANOVA), followed by Tukey’s multiple range test for
post hoc comparisons. Statistical significance was considered for
probabilities of p < 0.05.
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3 Results

3.1 ChIP-seq data analysis

The raw data has been uploaded to the GEO database with the
accession number GSE242277. The raw data from the sample

(Nrf2 chip) and control (Nrf2 input) groups were 5.96 billion bp
and 5.75 billion bp, respectively. After removing low-quality bases or
filtering for valid data (Table 1). The quality of the filtered data is
high (Q > 30), and the majority of the data surpasses this threshold,
indicating that the reads are of high quality. After quality control,
79.44% of the unique reads were localized to M. coruscus genome.

TABLE 1 Statistical summary of ChIP-seq raw data after filtration (average >Q30).

Samples Raw reads Raw bases Clean reads Clean bases Clean Q30 Clean rate (%)

Nrf2 chip1 21,213,802 3,182,070,300 20,448,090 2,988,027,409 93.22 93.90

Nrf2 chip2 21,213,802 3,182,070,300 20,448,090 2,973,059,420 90.19 93.43

Nrf2 input1 20,892,596 3,133,889,400 20,056,089 2,883,119,713 93.32 92.00

Nrf2 input2 20,892,596 3,133,889,400 20,056,089 2,866,943,649 89.92 91.48

FIGURE 1
Peak length distribution. The abscissa shows the peak length and the ordinate shows the number of the peaks. The plot illustrates the distribution of
peak lengths and provides insights into the frequency of peaks with different lengths in the dataset.

FIGURE 2
Distribution of peaks in genomic regions.
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The statistical analysis revealed a total of 3,465 peaks, with an
average peak length of 383.88 bp and a median peak length of
311 bp. The majority of peak lengths clustered around 200–300 bp
(Figure 1). Annotation of 3,465 peaks was conducted to obtain
comprehensive information about all the identified peaks in the
genome (Supplementary Table S2). Among all the peaks, 7.24% are
situated in the promoter transcription start site (TSS) regions
(Figure 2). The majority of peaks are located in intergenic
regions and introns (Figure 2).

3.2 Annotation of genes identified by
Nrf2 ChIP

To obtain a comprehensive set of Nrf2 binding sites, we
performed ChIP-seq analysis using the digestive gland of M.
coruscus. In total, 3,465 peaks were identified as potential binding
sites, and among them, 89.24% of the peaks were successfully
annotated to the nearest gene. Out of all the peaks, 219 were
localized within the promoter zone. Gene functions were
established through the utilization of information sourced
from diverse databases, notably Swiss-Prot, Interpro, TrEMBL,
and KEGG databases. A KEGG enrichment analysis was
conducted on a total of 3,465 screened peaks, revealing
significant signaling pathways linked to Nrf2 target genes,
which included Phosphatidylinositol signaling system
(map04070), cAMP signaling pathway (map04024), and
Peroxisome (map04146) (Figure 3A). The analysis of
enrichment for 219 peaks within the promoter region yielded
the subsequent pathways: FoxO signaling pathway (map04068),
mTOR signaling pathway (map04150), and p53 signaling
pathway (map04115) (Figure 3B). Binding sites located in
promoter regions (1K) are likely to be highly regulated by
Nrf2. We conducted a screening of our Nrf2 target gene of

interest, SLC35E2, for which the regulatory relationship with
Nrf2 has not been previously mentioned. SLC35E2 annotated to
M. coruscus chromosome 13 and there was a clear peak of
enrichment for SLC35E2 compared to the input group (Figure 4).

3.3 Nrf2-specific binding sites

Transcription factors’ DNA binding sites often exist as
conserved short sequence fragments. Therefore, motif analysis of
the ChIP-seq results aids in analyzing the recognition pattern of
transcription factors on DNA sequences. Predictions were screened
to assess the potential binding of Nrf2 to the identified motif
(Table 2).

3.4 Expression patterns and regulatory
relationships of target genes

To validate the targeting relationship between SLC35E2 and
Nrf2, a dual luciferase assay was employed. The activity of Firefly
luciferase was divided by the activity of Renilla luciferase to assess
the regulatory effect of SLC35E2 and the role of the transcription
factor Nrf2 on SLC35E2. The highest luciferase activity was observed
for pcDNA3.1+SLC35E2, whereas Nrf2+SLC35E2 luciferase activity
was lower (p < 0.05) (Figure 5A). This indicates that the presence of
Nrf2 leads to a reduction in the expression of SLC35E2. To explore
the regulatory relationship between Nrf2 and SLC35E2, we utilized
the Nrf2 agonist SFN and the Nrf2 inhibitor ML385. In comparison
to the control group, the expression of Nrf2 increased following SFN
treatment, while the expression of SLC35E2 decreased significantly
(p < 0.05) (Figure 5B). In contrast,Nrf2 expression was reduced, and
SLC35E2 expression significantly increased after ML385 treatment
(p < 0.05) (Figure 5B).

FIGURE 3
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. (A) A total of 3,465 peak KEGG enrichment analyses unveiled
signaling pathways. (B) The analysis of 219 peak KEGG enrichment, situated within the promoter region, unveiled signaling pathways.
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3.5 Nrf2 target genes and oxidative stress
regulation

McNrf2 and McSLC35E2 plasmids showed differences in ROS
levels after injection and Bap exposure. As depicted in Figure 6A, the
level of ROS was higher in the presence of Bap compared to the control
group (NC) (p < 0.05). However, when Bap was exposed and Nrf2 was
overexpressed, the level of ROS was reduced (p < 0.05). On the other
hand, elevating the level of SLC35E2 was associated with increased ROS
levels (p < 0.05). Nevertheless, when both Nrf2 and SLC35E2 were

overexpressed, the level of ROSwas lower thanwhen only SLC35E2was
overexpressed (p < 0.05). After injection, there was a notable difference
in T-AOC levels in the digestive gland, as depicted in Figure 6B. T-AOC
was elevated after exposure to Bap and Nrf2 overexpression in
comparison to the NC group (p < 0.05). Moreover, T-AOC was
decreased in the SLC35E2 overexpression group compared to the
Nrf2 overexpression group (p < 0.05). However, when both
Nrf2 and SLC35E2 were overexpressed, T-AOC levels were elevated
compared to SLC35E2 overexpression (p < 0.05).

4 Discussion

ChIP-seq is an exceptionally powerful technique for identifying
specific transcription factor binding sites (Bansal et al., 2015). Its
applications have been expanding rapidly, with recent studies
successfully implementing this method in different species.
Regrettably, the application of this technology to marine mollusks is
still in its infancy. Liu et al. (2020) successfully established the ChIP-seq
method in Crassostrea gigas. To our knowledge, this is the first
application of this technology in marine mollusks. In this study, the
researchers employed ChIP-seq technique to scan genes regulated by
HSF1. The sequencing yielded a set of unique reads, with a 34.2%match
rate to the C. gigas genome. Ultimately, a total of 916 peaks
corresponding to HSF1 binding sites were identified, of which 6%
were located in the TSS region, and a subset of HSP genes displayed a
direct binding to HSF1. In the present study, unique reads showed a
higher genome matching degree (79.44%), indicating high sequencing
quality. Statistical analysis revealed a total of 3,465 peaks corresponding
to Nrf2 binding sites, 7.24% of which were located at TSS region, and
most of the peaks were located at intergenic regions and introns. Our
results aligned with the results of a prior investigation, that Nrf2-ChIP-
seq data from A549 cells also revealed an approximately 7% gene
binding sites on the TSS promoter (Namani et al., 2019). This
consistency between our data and the previous study reinforced the
reliability and validity of the present findings.

FIGURE 4
Distribution of SLC35E2 in the genome situation. Each data point or peak on the plot represents the localization of SLC35E2 within the genome. The
x-axis represents the genomic coordinates, and the y-axis shows the intensity or frequency of SLC35E2 at each location.

TABLE 2 CentriMo enrichment motif for de novo results.

Rank Motif E-value

1 9.30E-03

2 4.20E-55

3 3.30E-61
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The KEGG analysis of peaks showed a predominant enrichment
in the FoxO, mTOR, and p53 signaling pathway. The FoxO signaling
pathway has been found to be involved in various aspects, including
lifespan regulation, growth and development, as well as resistance to
starvation and environmental stressors (Xiao et al., 2018; Wang
et al., 2021a; Chen et al., 2023). Considering that Nrf2 acts as a
crucial trigger for the body’s antioxidant defense mechanisms, the
significant association betweenMcNrf2 and FoxO implies that when
M. coruscusmussels face oxidative stress, the activation of the FoxO
pathway regulates growth and development, ultimately ensuring the
maintenance of normal life activities. In shellfish, the mTOR
signaling pathway also acts as a key player, orchestrating crucial
processes such as enhanced lysosomal membrane permeability and
the initiation of autophagy (Sforzini et al., 2018). This pathway is

constantly vigilant and responds to changing environmental
conditions, shaping shellfish cell metabolism and growth
strategies accordingly. It is widely believed that invertebrates in
marine environments encounter various stressors, including
pollutants, low oxygen, and pathogens. Studies have shown that
the p53 pathway promotes stress response and cell apoptosis in
bivalve cells under various stressors (Xie et al., 2022). Nrf2-targeted
genes were highly enriched in the mTOR and p53 pathways,
indicating that Nrf2 indeed plays an important role in bivalve’s
physiological responses to stressors, which may be associated with
immune response, cell cycle regulation, cell apoptosis, and other
processes.

Shin et al. (2013) investigated the functional roles of Nrf2 target
genes including glutamate cysteine ligase (GCLC), NAD(P)H,

FIGURE 5
Verification of regulatory relationship between Nrf2 and SLC35E2. (A) The relative activity of luciferase. The control group was pGL3-control
plasmid. The vertical bars represent the mean ± standard deviation (SD) (n = 3); *p < 0.05 (B) Expression levels of Nrf2 and SLC35E2 genes after SFN and
ML385 treatment. The vertical bars represent the mean ± SD (n = 3). **p < 0.01.

FIGURE 6
Nrf2 targeting SLC35E2 is involved in the antioxidant effect of Bap exposure. (A) ROS levels detected. (B) T-AOS levels detected. The vertical bars
represent the mean ± SD (n = 3). **p < 0.01.
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quinone oxidoreductase 1 (NQO-1), UDP-glucuronosyltransferase
(UGT), and hemeoxygenase-1 (HO-1), in hepatic pathophysiology.
They found that these genes play complex and multifaceted roles in
liver inflammation, fibrosis, and hepatocarcinogenesis. Nrf2 plays a
positive role in the equilibrium state, however, the imbalance of
Nrf2 and its target gene expression will inflict severe damage upon
the organism. Kong et al. (2021) found that sustained high
expression of Nrf2 and its target genes, NQO1 and B-cell
lymphoma-2 (BCL-2), induced dysplasia of cell proliferation and
apoptosis, and were associated with malignant transformation of
human bronchial epithelial cells induced by arsenite. Indeed, the
most important role of Nrf2 target genes lies in their contribution to
the antioxidant defense system and their ability to mitigate oxidative
damage. Nrf2 target genes ensure cell integrity and overall health in
the face of oxidative challenges by upregulating antioxidant enzymes
and detoxifying proteins (Wang et al., 2021b). Unfortunately,
studies of Nrf2 and its target genes have been more extensive in
humans and mammals, but there has been very limited reporting in
aquatic organisms, especially bivalve mollusks.

In the present study, ChIP-seq scanned a total of 219 candidate
target genes of McNrf2 with binding sites located within the
promoter region, and the enriched peaks corresponding to the
putative binding sites of SLC35E2 and Nrf2 were identified by
comparing the sequence reads with and without Nrf2 antibody
treatment. Laboratory experiments including the dual luciferase and
qRT-PCR assays were employed to verify the in silico prediction.
Dual luciferase assay showed that compared withMcSLC35E2 alone,
the luciferase activity in the Nrf2 supplemental group was lower,
indicating thatMcNrf2 could targetMcSLC35E2 and was negatively
correlated. The qRT-PCR further confirmed this fact, that the
transcriptional expression of McSLC35E2 was activated by
Nrf2 inhibitor ML385 while inhibited by Nrf2 agonist SFN.
These results suggested that McNrf2 may be involved in the
regulation of physiological processes in M. coruscus mussels by
inhibiting McSLC35E2.

Members of the SLC family play a crucial role in human
physiology as transporters that facilitate the transportation of
hydrophilic compounds into and out of cells and subcellular
organelles. For instance, SLC30 and SLC39 transport zinc,
SLC11 and SLC40 transport iron, and SLC19 transport folic acid
and thiamine (Lin et al., 2015). In addition, several
SLC35 transporter proteins, including the SLC35E2 subfamily,
are considered orphan SLC35 transporter proteins due to their
unclear physiological functions and substrate specificity (Parker
and Newstead, 2019). However, recent studies have revealed that
these orphan transporters may not be directly involved in
glycosylation processes (Li et al., 2022). Similarly, Sosicka et al.
(2019) provided support for the notion that the SLC35 protein
family may have diverse roles beyond glycosylation. For example,
SLC35D3 enhances the formation of protein complexes associated
with autophagy (Meng et al., 2012), while SLC35A4 plays a critical
role in subcellular distribution (Sosicka et al., 2017). Additionally,
SLC35F2 has been found to promote the progression of papillary
thyroid carcinoma (He et al., 2018). As for SLC35E2, the oncogenic
effect was confirmed in vivo using a mouse tumor model (Li et al.,
2022). In addition, the scRNA-seq technique has proved that
SLC35E2 mutations are associated with human disease variants
(Cuomo et al., 2022). In summary, the SLC family plays a

multifunctional role in various physiological activities.
Regrettably, limited research has been conducted on SLC35E2. In
order to investigate the involvement of McNrf2 in Bap-induced
antioxidant effects through its targeting of McSLC35E2, enzyme
activities were determined in the digestive glands injected with the
recombinant plasmids of McNrf2 and McSLC35E2 under or
non-Bap.

Bap, being one of the most toxic types of PAHs, has been
extensively characterized toxicologically (Bieser et al., 2011). The
detoxification process of PAHs can generate numerous active
intermediates and ROS substances, which can interfere with the
normal physiological functions of shellfish (Liu et al., 2014). At this
stage, the Nrf2 pathway is activated, which further triggers the
expression of a series of antioxidant enzyme genes, resulting in the
increase of T-AOC in the body. This elevation of T-AOC helps to
reduce ROS production and oxidative stress (Ma and He, 2012;
Cheng et al., 2022). Consistent with this, ROS production and
T-AOC levels in the digestive glands of M. coruscus exposed to
Bap were significantly increased in the present study compared with
the NC group, indicating that the Bap burst caused severe oxidative
stress to the mussels. Overexpression ofMcNrf2 leads to a significant
reduction in ROS production, on the contrary, a significant increase
in T-AOC levels is observed. Similar results were found in zebrafish
studies, where Shi and Zhou (2010) demonstrated that zebrafish
embryos exposed to POPs exhibited elevated ROS production and
increased oxidative stress, whereas ROS levels decreased when
Nrf2 was upregulated. It was worth noting that when
McSLC35E2 is overexpressed, ROS production is significantly
increased and T-AOC is significantly decreased. This result
demonstrated that McSLC35E2 may exacerbate oxidative damage,
leading to increased oxidative stress in mussels. However, when
McNrf2 and McSLC35E2 were both overexpressed, the situation is
exactly the opposite, suggesting that this two had antagonistic effects
on the oxidative stress induced by Bap in mussels.

5 Conclusion

In this study, ChIP-seq technique was employed to identify new
target genes of McNrf2 in M. coruscus. After comprehensive
genome-wide survey, 3,465 candidate target genes of
McNrf2 were scanned, of which 219 owned binding sites located
within the promoter region. Following, a typical target gene termed
McSLC35E2 was selected to perform the experimental verification.
Specifically, the targeting ofMcNrf2 toMcSLC35E2 was successfully
verified using both dual luciferase and qRT-PCR assay. In order to
investigate the involvement of McNrf2 in Bap-induced antioxidant
effects through its targeting of McSLC35E2, enzyme activities were
determined in the digestive glands injected with the recombinant
plasmids ofMcNrf2 andMcSLC35E2 under or non-Bap. The results
revealed that McNrf2 could participate in the anti-Bap oxidative
stress process by inhibiting McSLC35E2. Overall, these findings lay
the groundwork for applying ChIP-seq technology in mollusks,
opening up new avenues for understanding the function of
Nrf2 in the antioxidant defense system of marine mollusks. The
study contributes valuable knowledge that may have implications for
future research on environmental responses and stress adaptation in
mollusks.
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