9 research outputs found

    Up-Regulation of Th17 Cells May Underlie Inhibition of Treg Development Caused by Immunization with Activated Syngeneic T Cells

    Get PDF
    BACKGROUND: Our previous work showed that mice immunized with attenuated activated syngeneic T cells (aTCV) led to damping Treg function which resulted in enhancing anti-tumor immunity. It is well known that DC plays a very important role in controlling Th cell differentiation; whether DC involves Treg attenuation in immunized mice remained unknown. In this study, we provided evidence that increased mature DC (mDC) after immunization with aTCV skewed Th17 differentiation, which resulted in inhibition of Treg differentiation through IL-6 signaling pathway. PRINCIPAL FINDINGS: In the present study, we found that the frequency of mDCs increased dramatically in the immunized mice accompanied by lower Treg cells compared to the controls. Moreover, both DCs and serum derived from the immunized mice suppressed Treg differentiation in vitro, respectively. mDCs generated from bone marrow precursor cells in vitro strongly inhibited Treg development and simultaneously drove Th17 differentiation with elevated IL-6 production. However, PD-L1, a potent Treg inducer did not show effect on Treg down-regulation. Assay with transwell systems showed that cell-cell contact was necessary for IL-6 production to a threshold to activate Th17 transcriptional factor RORγt and to inhibit Treg counterpart Foxp3. CONCLUSIONS: Our results implicate up-regulated Th17 development might be one of mechanisms of enhancing anti-tumor immunity induced by immunization with aTCV, which provide a novel insight in numerous mechanisms responsible for anti-tumor immunity

    CCN1, a Pro-Inflammatory Factor, Aggravates Psoriasis Skin Lesions by Promoting Keratinocyte Activation

    Get PDF
    Psoriasis is a common chronic skin disease characterized by epidermal hyperplasia and inflammation. The pathogenesis of psoriasis is multifactorial and is not fully understood. Here we demonstrate that CCN1 (also called Cyr61, which is short for cysteine-rich 61), an extracellular matrix protein that is also considered a pro-inflammatory factor, is highly expressed in the lesional skin of psoriasis patients, as well as in that of imiquimod (IMQ)- and IL-23-treated psoriasis-like mice. Then we show that blocking CCN1 function in vivo attenuates epidermal hyperplasia and inflammation in psoriasis-like mice. Further, in primary cultured normal human keratinocytes and HaCaT (human keratinocyte cell line) cells, CCN1 promotes keratinocyte activation, including the proliferation and expression of immune-related molecules. Finally, we observe that integrin α6β1 is the receptor of CCN1 in keratinocytes, and CCN1 stimulation activates the downstream phosphoinositide-3 kinase/Akt/NF-κB signaling pathway. Taken together, our findings reveal that CCN1 has a critical role in psoriasis pathogenesis. Moreover, as CCN1 is a secreted extracellular matrix (ECM) protein, our study also provides evidence that ECM, which is involved in psoriatic pathogenesis, could be a potent target for psoriasis treatment
    corecore