2,442 research outputs found

    Polarization observables in high-energy deuteron photodisintegration within the Quark-Gluon Strings Model

    Get PDF
    Deuteron two-body photodisintegration is analysed within the framework of the Quark-Gluon Strings Model. The model describes fairly well the recent experimental data from TJNAF in the few GeV region. Angular distributions at different γ\gamma-energies are presented and the effect of a forward-backward asymmetry is discussed. New results from the QGSM for polarization observables from 1.5 -- 6 GeV are presented and compared with the available data.Comment: 3 pages, LaTeX, 4 postscript figures; contribution to QNP2002, Juelich, June 10-14, 200

    Groundwater processes in a complex landslide, northern Apennines, Italy

    Get PDF
    The hydrogeological characteristics of rototranslationalslides in flysch are complex, due to the inherentanisotropy and heterogeneity of rock masses and related deposits.The paper deals with the hydrogeological characterizationof a reactivated roto-translational slide affecting Cretaceousflysch rocks, located in the northern Apennines ofItaly. Continuous monitoring of groundwater levels, in-situpermeability and pumping tests, hydrochemical and physicalanalyses and Uranine tracers were the adopted prospectingmethods.In this research hydrological monitoring and investigationare summarized in order to define a hydrogeological conceptualmodel of the landslide source area. Results showed thattwo overlaying hydrogeological units exist at the slope scale:the first is unconfined, but highly compartmentalized, andhosted in the fractured and dismembered rock slide body.The second is confined and lays in the undisturbed flyschbelow the sliding surface. The groundwater level in theconfined hydrogeological unit is twenty meters higher thanthe groundwater level in the uppermost one. Moreover, thegroundwater chemistry characterization revealed a rising ofdeep fluids in the landslide area

    Self-Diffusion in Random-Tiling Quasicrystals

    Full text link
    The first explicit realization of the conjecture that phason dynamics leads to self-diffusion in quasicrystals is presented for the icosahedral Ammann tilings. On short time scales, the transport is found to be subdiffusive with the exponent β0.57(1)\beta\approx0.57(1), while on long time scales it is consistent with normal diffusion that is up to an order of magnitude larger than in the typical room temperature vacancy-assisted self-diffusion. No simple finite-size scaling is found, suggesting anomalous corrections to normal diffusion, or existence of at least two independent length scales.Comment: 11 pages + 2 figures, COMPRESSED postscript figures available by anonymous ftp to black_hole.physics.ubc.ca directory outgoing/diffuse (use bi for binary mode to transfer), REVTeX 3.0, CTP-TAMU 21/9

    A high-performance custom photodetection system to probe the light yield enhancement in oriented crystals

    Full text link
    Scintillating homogeneous detectors represent the state of the art in electromagnetic calorimetry. Moreover, the currently neglected crystalline nature of the most common inorganic scintillators can be exploited to achieve an outstanding performance boost in terms of compactness and energy resolution. In fact, it was recently demonstrated by the AXIAL/ELIOT experiments that a strong reduction in the radiation length inside PWO, and a subsequent enhancement in the scintillation light emitted per unit thickness, are attained when the incident particle trajectory is aligned with a crystal axis within 1\sim 1^\circ. A SiPM-based system has been developed to directly probe this remarkable effect by measuring the scintillation light emitted by a PWO sample. The same concept could be applied to full-scale detectors that would feature a design significantly more compact than currently achievable and unparalleled resolution in the range of interest for present and future experiments

    Valorization of byproducts of hemp multipurpose crop: Short non-aligned bast fibers as a source of nanocellulose

    Get PDF
    Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5–12 nm, stacks of nanofibrils with widths of 20–200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils

    Replacement of miR-155 elicits tumor suppressive activity and antagonizes bortezomib resistance in multiple myeloma

    Get PDF
    Aberrant expression of microRNAs (miRNAs) has been associated to the pathogenesis of multiple myeloma (MM). While miR-155 is considered a therapeutic target in several malignancies, its role in MM is still unclear. The analysis of miR-155 expression indicates its down-regulation in MM patient-derived as compared to healthy plasma cells, thus pointing to a tumor suppressor role in this malignancy. On this finding, we investigated miR-155 replacement as a potential anti-tumor strategy in MM. The miR-155 enforced expression triggered anti-proliferative and pro-apoptotic effects in vitro. Given the lower miR-155 levels in bortezomib-resistant as compared to sensitive MM cells, we analyzed the possible involvement of miR-155 in bortezomib resistance. Importantly, miR-155 replacement enhanced bortezomib anti-tumor activity both in vitro and in vivo in a xenograft model of human MM. In primary MM cells, we observed an inverse correlation between miR-155 and the mRNA encoding the proteasome subunit gene PSMβ5, whose dysregulation has been largely implicated in bortezomib resistance, and we validated PSMβ5 30UTR mRNA targeting, along with reduced proteasome activity, by miR-155. Collectively, our findings demonstrate that miR-155 elicits anti-MM activity, likely via proteasome inhibition, providing the framework for miR-155-based anti-MM therapeutic strategies

    Interleukin-21 sustains inflammatory signals that contribute to sporadic colon tumorigenesis

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This work received support from the “Fondazione Umberto di Mario ONLUS”, Rome, and AIRC (MFAG-12108 to CS and IG-13049 to GM)

    Expression Pattern and Biological Significance of the lncRNA ST3GAL6-AS1 in Multiple Myeloma

    Get PDF
    The biological impact of long non-coding RNAs (lncRNAs) in multiple myeloma (MM) is becoming an important aspect of investigation, which may contribute to the understanding of the complex pathobiology of the disease whilst also providing novel potential therapeutic targets. Herein, we investigated the expression pattern and the biological significance of the lncRNA ST3 beta-galactoside alpha-2,3 sialyltransferase 6 antisense RNA 1 (ST3GAL6-AS1) in MM. We documented a high ST3GAL6-AS1 expression level in MM compared to normal plasma cells (PCs) or other hematological malignancies. Transcriptome analyses of MM PCs from patients included in the CoMMpass database indicated a potential involvement of ST3GAL6-AS1 in MAPK signaling and ubiquitin-mediated proteolysis pathways. ST3GAL6-AS1 silencing by LNA-gapmeR antisense oligonucleotides inhibits cell proliferation and triggers apoptosis in MM cell line. Notably, ST3GAL6-AS1 silencing in vitro displayed the down-regulation of the MAPK pathway and protein ubiquitination. These data suggest that ST3GAL6-AS1 deregulation may play a pathogenetic role in MM by affecting both proliferation pathways and circuits fundamental for PC survival. However, ST3GAL6-AS1 expression levels seem not to be significantly associated with clinical outcome and its targeting appears to exert antagonistic effects with proteasome inhibitors used in MM. These findings strongly urge the need for further studies investigating the relevance of ST3GAL6-AS1 in MM

    Expression pattern and biological significance of the lncRNA ST3GAL6-AS1 in multiple myeloma

    Get PDF
    The biological impact of long non-coding RNAs (lncRNAs) in multiple myeloma (MM) is becoming an important aspect of investigation, which may contribute to the understanding of the complex pathobiology of the disease whilst also providing novel potential therapeutic targets. Herein, we investigated the expression pattern and the biological significance of the lncRNA ST3 beta-galactoside alpha-2,3 sialyltransferase 6 antisense RNA 1 (ST3GAL6-AS1) in MM. We documented a high ST3GAL6-AS1 expression level in MM compared to normal plasma cells (PCs) or other hematological malignancies. Transcriptome analyses of MM PCs from patients included in the CoMMpass database indicated a potential involvement of ST3GAL6-AS1 in MAPK signaling and ubiquitin-mediated proteolysis pathways. ST3GAL6-AS1 silencing by LNA-gapmeR antisense oligonucleotides inhibits cell proliferation and triggers apoptosis in MM cell line. Notably, ST3GAL6-AS1 silencing in vitro displayed the down-regulation of the MAPK pathway and protein ubiquitination. These data suggest that ST3GAL6-AS1 deregulation may play a pathogenetic role in MM by affecting both proliferation pathways and circuits fundamental for PC survival. However, ST3GAL6-AS1 expression levels seem not to be significantly associated with clinical outcome and its targeting appears to exert antagonistic effects with proteasome inhibitors used in MM. These findings strongly urge the need for further studies investigating the relevance of ST3GAL6-AS1 in MM

    Interleukin-21 sustains inflammatory signals that contribute to sporadic colon tumorigenesis

    Get PDF
    Interleukin (IL)-21 triggers inflammatory signals that contribute to the growth of neoplastic cells in mouse models of colitis-associated colorectal cancer (CRC). Because most CRCs are sporadic and arise in the absence of overt inflammation we have investigated the role of IL-21 in these tumors in mouse and man. IL-21 was highly expressed in human sporadic CRC and produced mostly by IFN-γ-expressing T-bet/RORγt double-positive CD3+CD8- cells. Stimulation of human CRC cell lines with IL-21 did not directly activate the oncogenic transcription factors STAT3 and NF-kB and did not affect CRC cell proliferation and survival. In contrast, IL-21 modulated the production of protumorigenic factors by human tumor infiltrating T cells. IL-21 was upregulated in the neoplastic areas, as compared with non-tumor mucosa, of Apc(min/+) mice, and genetic ablation of IL-21 in such mice resulted in a marked decrease of both tumor incidence and size. IL-21 deficiency was associated with reduced STAT3/NF-kB activation in both immune cells and neoplastic cells, diminished synthesis of protumorigenic cytokines (that is, IL-17A, IL-22, TNF-α and IL-6), downregulation of COX-2/PGE2 pathway and decreased angiogenesis in the lesions of Apc(min/+) mice. Altogether, data suggest that IL-21 promotes a protumorigenic inflammatory circuit that ultimately sustains the development of sporadic CRC
    corecore